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Abstract

Debate continues over topics involving rainfall-runoff (R-R) model
structures and the appropriateness of various model structures in resolving
questions regarding storm runoff. Recently, a mathematical formalization
was developed for rainfall-runoff models such as included in the computer
program HEC-1 and related programs. With this formalization, a precise
examination can be made of the algorithmic underpinnings of various R-R
modeling structures. In this paper, the formalization is extended to R-R
models whose algorithms and processes satisfy the mass conservation
equation and also assume storage is a function of outflow such that the first
derivative of storage with respect to outflow is positive. The formalization
introduces two types of R-R computer model structures, called "Type 1" or
"Type 2", that describe almost all R-R computer models in use today. For
example, the classic unit hydrograph method is found to be a Type 1 model
structure. A R-R model siructure that satisfies mass conservation, but is not a
Type I model is said, in this paper, to be a Type Il model. The formalization is
then applied to introduce a procedure useful in deciding which of the Type 1
or Type 2 model structures is "best” for a particular application given a R-R
data set for model calibration purposes.
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INTRODUCTION

In Hromadka and Whitley (1998), a mathematical formalization of the
link-node modeling system used in the computer program HEC-1 and related
computer programs was introduced that provided a mathematical description
of these frequently used rainfall-runoff computer-model structures. It was
shown that many rainfall-runoff (R-R) computer-model structures involve
algorithms and processes that are described by an assemblage of Toeplitz
matrices that describe the computer model's transformation of effective
rainfall (rainfall less losses) into a runoff hydrograph. For example, the unit-
hydrograph-method algorithm for generating subarea runoff and the
hydrograph-routing algorithms for convex, Muskingum, translation,
convolution and modified Puls (with storage being equal to the product of a
constant parameter with outflow, i.e., a linear storage method) have ail been
shown to be described by Toeplitz matrices. Because the sum and product of
Toeplitz matrices is a Toeplitz matrix, the entire modeling network
methodology of subdividing a watershed into subareas, combining subarea
hydrographs, and routing flood hydrographs through links, can be described
by the Toeplitz matrix formalization for many frequently used computer-
model structures such as contained in HEC-1. Thus, a classification is possible
of R-R computer model structures regarding whether a particular R-R
computer model can be mathematically described by a Toeplitz matrix system.

In this paper, an examination is made of R-R computer models that are
not resolvable into Toeplitz matrix systems. By expanding upon the basic
continuity equation of mass transport in a closed system, another R-R
computer model structure class is identified. This new class of R-R model
structure is shown to be mathematically described by the sum and product of
lower triangular matrices that are not of the Toeplitz type. The new class of
model structure provides further insight as to how R-R model algorithms
and components integrate, and provides another link to standard
mathematical optimization techniques and concepts. Additionally, a
procedure is advanced as to how to select a particular type of R-R computer-
model structure, between the two model structure types identified in this
paper, for use in runoff prediction. It is noted that this paper develops a
mathematical description of the R-R computer model itself rather than



examining the conceptual model that the R-R computer model attempts to
approximate. Therefore, the mathematical formalization provides a precise
description of R-R computer model structures, and is not a prescription for
formulating a new class of R-R model structure.

The Continuity Equation

The well-known continuity equation of mass transport in a closed
system, as applied to storm runoff, is given by

= -d—s- 1
IO+dt (1)

where I = runoff inflow rate; O = runoff outflow rate; 5 = runoff storage; and t

is time.

For a small time step At, Eq. (1) is typically approximated in R-R
computer models by
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where, for example, Ij is notation for runoff inflow at time t;, and I+ is
inflow at time t; + At.

A key assumption typically used in hydrologic-modeling algorithms is
that Eq. (2) applies to the particular algorithm (e.g., hydrograph routing) and
also that runoff storage and outflow are functionally related by

dS - dS dO (3)
dt dO dt

where S and g(s)— are positive (and nonzero) functions of outflow, O. This

assumption may be problematic in applications involving backwater or
hysterisis effects, among other issues. For example, a lengthy routing link
may involve a rising or falling limb of a hydrograph that is not well
approximated by Eq. (3).

Assuming that the time step size, At, is sufficiently small, the term %

is typically assumed constant during the time step such that
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where Eq. (4) and the constant k; applies to a particular time step, At;.

Combining (2) and (4) gives, for a particular time step,

L+l o Oi+Om1 g, (O "Oi) 5)
2 2 At
Recombining terms we have
aj Ii + aj Liv1 + bj O; = Oipg ®)

where a; = 1/(1 + 2ki/At); by = (2ki - AD/ (2K + Ab); k; = (%)] .- Where t is
1

model time (i-1)At; and I, = Oy = 0.
Matrix Representations

The usual procedure applied in R-R computer models to represent
storm rainfall or a runoff hydrograph is to discretize the total storm duration
into unit-period time intervals of constant duration, At. Both the effective

rainfall over a subarea, and an inflow hydrograph to a routing link, can be
handled as an inflow vector I where
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where the dimension n of I is chosen to be consistent with the entire matrix

system to be developed. Similarly, the subarea runoff hydrograph, or an

outflow hydrograph from a routing link, can be handled as an outflow vector
O where
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Note that in (7), for example, I, =1(2At) where At is the constant time step.

From (6),
O = a1y
O2 = aslj + aslr + b0y

asly + azlz + brajly 9

O3 = azly + a3lz + b3O7

"

aszly + azlz + bzasl; + bzazl; + baboajly

In matrix form, a particular R-R computer-model algorithm given by (9) is
mathematically described by
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or in simpler notation,

O =HI (11)

~

where Oand I are nx1 column vectors; and H is a nxn lower triangular

matrix. The matrix system (10) applies to any algorithm or component used
in a R-R computer model that satisfies assumptions (1) and (3), and is based



upon a discretization of time such as (2), (4) and (5). Although the H matrix
of (10) is a function of the particular R-R model algorithm's properties, the
notation "H" is used for any such H matrix without further descriptive
notation specifying that particular algorithm's attributes. In order to
maintain consistent dimensions, the vectors O and I often require additional

zero value entries in order to extend the vector's dimension.

The particular H matrix of (10) is generated by noting that the entries of
row i+1 are equal to the entries of row i multiplied by the value bj;1, and
adding the value aj4+1 to H(i+1,i) and H(i+1,i+1). Hereafter in this paper, a R-
R computer model, whose component algorithms and processes all satisfy
Egs. (1) to (6), is called a "Type 2" model.

An example of a Type 2 R-R model is a HEC-1 model network, with
significant detention basin effects modeled by use of the modified-Puls
method such that basin outflow and basin storage are not linearly related.

A computer model network of a catchment is composed of several
linkages and sources of runoff. Consequently, the corresponding subarea
runoff estimators and hydrograph routing algorithms all combine in a
complex way. The nonlinearity of a routing algorithm may be dampened to
insignificance by another routing algorithm or by the contribution from a
subarea runoff estimation method, resulting in a global model that is
essentially a Type I model structure. Similarly, the nonlinearity effects
evident at a particular process in a catchment may preclude the use of a Type I
model structure due to the improvement in accuracy afforded by a Type II
model structure.

Subarea Runoff Hydrographs

Let the study watershed, denoted as €2, be discretized into subareas £;,

j=12,..,N. Each subarea has an associated effective rainfall vector ej

developed by some prescribed algorithm, where each e j is a nx1 column

i~

vector composed of sequential At unit-period effective-rainfall depths
(rainfall less losses), analogous to the vector of (7). If the subarea j runoff



generation algorithm is from a Type 2 model, then the runoff hydrograph in
vector form (analogous to Eq. (8)), denoted as 9j, is given by

q5=Tje, (12)

where Tjis the appropriate H matrix of Eq. (11) for this particular process and
subarea j.

Flood Hydfograph Routing

In a model link-node network, subareas are linked together by
hydrograph-routing links that include a model algorithm for transporting a
hydrograph along the length of the routing link. A link is described as a
connection between nodal points (nodes).

Given an inflow hydrograph at node i, and a link that connects node i
to downstream node i+1, then the outflow hydrograph, at node i+1, is
developed by routing the inflow hydrograph along the length of the link,
Lii+1. If the routing algorithm is from a Type 2 model, then the following
equation in the form of (11) is obtained

Qi = Riir1 I, (13)

—
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where I, is the inflow hydrograph at node i in At unit-period vector form;

Qi 41 is the outflow hydrograph at node i+1; and R;j;1 is the appropriate H

o~

matrix for the hydrograph-routing algorithm selected for link L; j4+1.

Link-Node Models

Link-node model applications of Type 2 R-R computer models are
readily developed using the above formulations.

Example 1. Figure 1 depicts a model schematic where a single subarea runoff
hydrograph concentrates at node #1 and is then routed to node #2 via model
link L1 2. For a Type 2 model, the runoff hydrograph from subarea #1 is given

by
9, =T1e

~



and the runoff hydrograph at node #1 is given by Q, =49;. The hydrograph

at node #2 is
Q, =R12Q; =R12Tre,

~

Example 2. Figure 2 depicts a model schematic involving four subareas and
two links. From the figure, the various runoff hydrographs developed from a
Type 2 computer model are given by

91=g1 +g2 ='[F1§1+T2¢32
(32 =R 91 +g3 =R1 (T El + T iz)+-ﬂ_333
Q3 =R23Q, +qu =Ro3 (R1o(Tre; +Toe,)+Taeq) + Tye,

where again Q, is the runoff hydrograph at node #3 developed from a
particular Tyge 2 computer model, and ¢ is the runoff hydrograph from

subarea #3 developed from the particular Type 2 computer model.

H Matrix Principles

From the above, a Type 2 R-R computer model can be resolved into
sums and products of H matrices such as developed in Eq. (10). In order to
use this result effectively, some of the properties associated with H matrices
must be considered.

Let H(n) be the set of all nxn lower triangular matrices, and any
element of H(n) is said to be a H matrix. Key properties of H(n) are as follows:

Property 1: LetAand B € H(n). Then A+ B € H(n).

Property 2: LetAand B € H(n). Then AB & H(n).

Property 3: Let A be a real constant and A € H(n). Then A A € H(n).
Property 4: A+B =08 + A.

Property 5: (A+B)+C=A+{B+0C).

Property 6: Let A, B, C all be € H{n). Then A(B + C) = AB + AC.



With the above properties, the manipulation of the H matrices is
straightforward. It is noted, however, that the product of H matrices is not
necessarily commutative. This mathematical result is consistent with
nonlinear R-R computer model results that indicate sensitivity to the
ordering and arrangement of links and other processes. Using the above
properties, the example 2 problem results for node #3 can be expanded into a
series, as

Qz =R23R12T1e; +Ro3RioToe, +Ro3Tae; +Taey

4
=H1?_1+H2?,2+H333+H4i4 =j§|]—[]jej (14)
where each Hjis a H matrix and, for example, Hy = Ry 3 R T1.

Comparison to a Toeplitz Matrix Structure

In Hromadka and Whitley (1998), a mathematical formalization of the
link-node modeling system used in the computer program HEC-1 and related
programs produced the result that many frequently used R-R computer-
model structures were resolvable into Toeplitz matrix systems. Toeplitz
matrices of dimension n, denoted by T(n), are also H matrices except that a
particular circulant matrix structure occurs; for example, for U € T(n),

[ ug 0 0 eee 0 ]
| uy uj 0 see 0 |
| us uy Uy eee 0 |
U= . . . o | (15)
I [ [} L J [ 2 l
| [ [} * [ l
L Up  Upl Up2 **& Ul |

Note that in (15), the diagonal and off-diagonal terms are constant. Many R-R
computer models utilize processes and algorithms that are shown, in
Hromadka and Whitley (1998), to be Toeplitz matrices (see the Introduction of
this paper). Hereafter in this paper, computer models whose algorithms and
processes resolve into Toeplitz matrices will be called "Type 1" models.



Because Type 1 models are also Type 2 models, they satisfy the above
properties 1 to 6. It is noted that for Toeplitz matrices, matrix multiplication
is commutative, which is a different result than for H matrices in a Type 2
model.

The distinction between Type 1 and Type 2 model algorithms and
processes occurs at Eq. (3). If % is a constant for a particular algorithm, then

in Egs. (6), (9), (10), the terms aj and bj are the constants ay and by, respectively,
in which case (10) simplifies to

[ O] [ ao 0 0 eee 0 ] [13)]
I O | | aglbo+ 1) 2o 0 eee 0 | | 1|
| O3 | | boaolbo+1)  aplbo+1) a, eee 0 | | I3 |
| [ ] | = | L ] L ] [ ] L ] | | [ ] |
I e | | . . . e | | e |
| o | I . . . N
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which is a Toeplitz matrix system. Several algorithms used in HEC-1 and
related programs are resolvable into Toeplitz matrices; for example the
hydrologic routing procedures of translation, convex, Muskingum,
convolution, modified-Puls (with S = kO; i.e., a linear routing method), and
the unit-hydrograph method for generating runoff are all Toeplitz matrix
systems (Hromadka and Whitley, 1998). Similarly, modified-Puls routing
where storage and outflow are nonlinear, or in a nonlinear model of
hydrograph routing, the corresponding matrix system is not of the Toeplitz
form, yet the continuity equations (1) to (6) are satisfied; these algorithms are
found in Type Il models.

Matrix System Representation Series Expansions

Suppose a Type 1 computer model is used to study a watershed with m
"sources" of effective-rainfall information vectors. For example, several
subareas of the link-node model may have identical effective-rainfall vectors
or have subarea effective rainfalls that are linear combinations of source
effective-rainfall data. The concept introduced here of "sources” of effective

10



rainfall is analogous to the principles involving mutually independent
vectors where, in this case, a subarea's effective-rainfall vector is a linear
combination of other subarea effective-rainfall vectors. The minimum
number of linearly independent effective-rainfall vectors is called a basis,
where each subarea's effective-rainfall vector is a linear combination of the
basis or "source" effective-rainfall vectors. The number of linearly
independent vectors in the basis is called the dimension. Hromadka (1993)

provides more details. Then, by generalizing the series expansion of Eq. (14),
the computed runoff hydrograph is the vector Q where

Q=2 Ake, (17)
~ k=1 ~

where Q and each e are nx1 column vectors; each A is an nxn Toeplitz

matrix; and m is the dimension of the effective-rainfall vector basis.

Similarly, if a Type 2 computer model is used, then from the series
expansion of Eq. (14),

m
Q=) Hie, (18)
~ k=l ~
where each Hy is an nxn H matrix.

If only a single source of effective-rainfall information (i.e., the
effective-rainfall vector basis has a dimension = 1) is used, the vector eg /s

then Egs. (17) and (18) simplify to

Q=1 A, ey Type 1 model (19)

(

L Ho ey ; Type 2 model (20)
where Ag is a nxn Toeplitz matrix; and Hy is a nxn H matrix. The matrices Ag
and H, are consistent with the dimensions of the Ay and Hy matrices used in
(17) and (18), respectively. The zero subscript notation in A, and Hy, is used to
indicate that, in the case of (19) and (20), both Ay and H, are equivalent to the
entire assemblage of Ay and Hy matrices used in (17) and (18), respectively.

The use of Egs. (19) and (20) is further investigated for deciding whether a
Type 1 or Type 2 R-R computer model is "best".
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R-R Model Calibration and Model Structure Selection

In order to simplify the analysis, a single storm and a single source of
effective-rainfall information are considered for R-R model calibration
purposes. Equations (17) to (20) are important because they show that the
application of a Type 1 or Type 2 R-R computer model to a highly discretized
watershed involving numerous subareas linked together by numerous
hydrograph-routing links results in a nxn matrix series expansion (Eqgs. 17, 18)
that, in the case of a single source of effective rainfall information, simply
sums to a single matrix-vector product (Egs. 19, 20) and this resulting matrix-
vector product involves a nxn matrix that is either a nxn Toeplitz matrix, A,,
(Eg. 19) or an nxn H matrix, Hy (Eq. 20). That is, if the effective rainfall vector
set has a basis of dimension = 1, then regardless of the number of links and
subareas, the matrix systems of (19) or (20) still result. Of course, different
arrangements or different choices of hydrograph-routing algorithms (e.g.
Muskingum versus convex, etc.) or use of a different subarea hydrograph
generator algorithm will result in different Ay and Hix matrices in (17) and
(18), and also different A and Hg matrices in (19) and (20), respectively.
Consequently, a wide range of matrices must be considered due to the variety
of R-R model schematics and algorithms. The key issue, then, is determining
the "best" matrices to be used in Eqs. (17) to (20). One approach is to utilize
standard optimization techniques, which are summarized below.

Let Ag be in T(n). Then,

[ a1 0 0 s 0 |
| an al 0 see 0 |

Ao=1 a3 as aj seoe 0 | 21)
l . ] ) . l
| ] . . . [
| L ] * L ] ® |
L an An-1 an-2 s aj ]

Then A, is seen to a function of n variables (or degrees of freedom)

AO = AD(aII 32;---;an) (22)
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Similarly, the Hy, matrix of (20) is in H(n) where

[ hy 0 0 oo 0 ]
| h2 h3 0 se e 0 l

Ho=| hgy hs hg eese 0 | (23)
| [ ] [ ] [ ] [ ] !
l . . . . |
| L} L ] » L ] |
I_ 'y . . csew h(n+1)n/2 _]

Thus, M, is a function of (n+1)n/2 degrees of freedom:

Ho = Ho(hl.- h2;---,h{n+1)n/2) (24)

When rainfall-runoff data are available to calibrate the R-R model at a specific
point of study, the question arises whether to calibrate the matrix systems of
Egs. (19) or (20}, or whether to attempt to calibrate each of the numerous
algorithms and processes leading to Eqs. (17) and (18).

In order to differentiate between these two types of calibration
strategies, let HIN be the Hy matrix resulting from the calibration of each link-

node model algorithm and process leading to the development of (20), and let
H?, be the Ho matrix resulting from the direct calibration of Eq. (23) in Eq. (20).
Similarly, let AN and A% be the resulting Toeplitz matrices from calibration
of each of the various link-node processes and algorithms leading to (19) and
the calibration of Eq. (21), respectively (Hromadka and Whitley (1998) focus
on this particular topic).

As shown in Hromadka and Whitley (1998), for a Type 1 computer
model, the best calibration is achieved using the /—‘%"(‘) matrix, because the N(-)N

matrix cannot do any better than the A7 matrix in reducing the residual error

between computed runoff and the runoff data. It is recalled that setting Ay =
A% in Eq. (19) results in a matrix system representation of the classic single
area unit-hydrograph method. Similarly, the HN matrix cannot outperform
the H?, matrix in reducing modeling residual error in the Type 2 computer-

model calibration effort.
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Thus, the best calibration possible from the Type 1 or Type 2 computer
model, to a specific storm, given a single source of effective-rainfall data, is
achieved by developing the A7 or H matrices, respectively, as used in Egs.
(19) and (20). This conclusion is used in developing a decision-making
procedure for deciding whether to use a Type 1 or Type 2 R-R computer
model. In other words, provision of an answer to the question, "Are the R-R
data sufficient to conclude that use of a Type 2 model will necessarily provide
better results than use of a Type 1 model?" will be attempted. This question is
posed more precisely in the following Type 1 R-R Model Structure Selection
Test.

TYPE 1 R-R MODEL STRUCTURE SELECTION TEST:

Let Ty and Ty be the sets of all Type 1 and Type 2 R-R computer models,
respectively. Let T3 = Ty - T1, because Tq is a subset of Ty, it is necessary to
distinguish models in T7 that are not simply Toeplitz systems and, therefore,
also in Tq.

Let © be a set of M (M > 1) mutually independent rainfall-runoff
events to be used for R-R model calibration and verification purposes.
Choose a split-sample size, 0 < Mg < M where Mg is the number of storms to
be used in model calibration, and (M-Mg) storms are used in model

verification tests. Then there are n = (1\1\//115} possible split-sample

combinations of the M R-R events in . Let Sy be the set of all such split-
sample combinations. The elements of Sy are denoted by s; € Sypi=12,..m.

Let the minimum least-squares residual error in calibration of a Type 1
and a Type 2 R-R computer model to split-sample data set s; € Sy be achieved
by elements M, € T and M7, € Ty, respectively; i = 1,2,..1. M7 (and also
M‘éi) is optimized with respect to all Ms storms in sj, simultaneously.

Three cases are identified:

(a)  If M7, € Ty, then M7, = M7, and a Type 1 model structure

provides the minimum calibration residual error.
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(b) If M’:’Zi &€ T3 and the residual error for the verification events (of
si) produced by M’*1 ; is less than that produced by M”Zi, then a

Type 1 model structure provides the minimum verification test
residual error.

(c)  Neither case (a) or (b) applies.

If either case (a) or (b) applies for data set s;, then the above described test is
considered "passed". Let P be the total number of passed tests; fori =1,2,...1.
Define the Type 1 Model Structure performance ratio, r, by r = P/m.

In this paper, if r > 50-percent, the Type 1 R-R model structure is
selected as the "best" model structure, i.e.,, more than 50-percent of the time
the use of Toeplitz matrices, as opposed to the use of the more general lower
triangular matrices, provides either the smallest calibration error or the
smallest verification error.

Choosing Between a Type 1 or Type 2 Model Structure

To apply the above concepts, the optional A7 and H? matrices must be
determined with respect to several storms simultaneously. Specifically,
suppose M storms with similar effective rainfalls (similar in timing and
magnitude) are available. Then, regardless of the R-R model structure,
similar computed runoff hydrographs are expected. Additionally, similar
matrix systems should be developed for each of these storms (although, of
course, the Type 1 matrices would differ from the Type 2 matrices).

In order to choose a Type 1 or Type 2 R-R computer model for future
use, the split-sample test procedure, provided below, can be used:
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R-R Model Split Sample Test

Step 1.

Step 2.

te

w
it

2
—
M

!lh

Step 6.

Divide the M similar storm data sets of effective rainfall and runoff
into two sets, calibration and verification.

Develop optimized matrices A} and H?, each optimized for the
entire set of calibration storms, using a least squares residual
minimization and Eqs. (19) and (20). Constraints may be considered
such as imposing a requirement that all matrix entries are
nonnegative; or that particular matrix entry values are bounded by
proportions of other matrix entry values; among other constraints.
(The following application case study demonstrates the
optimization process for 4 calibration storms, simultaneously.)

For the verification storms, use A and H? in Egs. (19) and (20) to

"predict” runoff quantities for each verification event.

Compare the computed runoff hydrographs from Step 3 to the
runoff data for the verification storm set and compute the total

residual error.

Select the computer model type based on the least total residual

error.

Repeat steps 1 to 5 by trying all possible split-sampling combinations
to evaluate sensitivity to selection of model type.

From the previous section, the Type 1 model that solves Eq. (19), using A}, is

the best Type 1 model in calibrating to the R-R data at a specific watershed

location. Similarly, the best Type 2 model performance in calibration to the
R-R data is achieved using Eq. (20) with the H matrix. Because there are

more degrees of freedom in the H7 matrix, Eq. (20) will typically provide a

lower calibration residual error than Eq. (19), and could appear to be the better
model structure; however, a better model in calibration is not necessarily a
better model in prediction; hence, the split-sample test procedure.
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If the A7 matrix Type 1 model provides the best split-sample testing
verification results in comparison to the H?, matrix Type 2 model, then no
other Type 2 model can perform any better than the A% matrix Type 1 model

for the given test calibration specifications; i.e., the classic single-area unit
hydrograph technique is the best approximation in the specific case study and
for the available R-R data.

It is noted that the above calibration procedure results in an A% matrix

that can be used for a variety of storms just as a calibrated unit hydrograph is
commonly used for a variety of storms. In contrast, the above H? matrix is
only appropriate for use with storms whose effective rainfalls are similar in
both magnitude and timing with the set of storm effective rainfalls used in
the calibration and development of the HY matrix. This is because the H,

matrix was constructed from a set of g—cs) values (see Egs. {1) to (6)) that are all

mutually dependent on storm timing and magnitude, which dictates the
condition of runoff storage throughout the link-node model for each model
time step, At.

If the split-sample test results indicates strong evidence that a Type I
model structure does not achieve the success, in verification, that a Type II
model structure achieves, then there may be several issues that are involved.
For example, there may be highly nonlinear R-R or routing processes
involved, there may be issues regarding R-R data, among other topics.

Case Study: Choosing Between a Type 1 or Type 2 R-R Computer Model
Structures for a Catchment in Los Angeles, California

Seven significant storms {ei ; i=1,2,...,7} were selected from a single

rain gauge in Los Angeles, California. The rain gauge is located near the
centroid of a 7.4 square mile watershed. The watershed's condition of
urbanization and storm drainage is essentially constant for all seven storms.
The time of concentration is approximately 50 minutes as computed from a
sum of flow velocity travel times along the main watercourse. Each of the
selected storms had similar prior rainfall histories (i.e., antecedent moisture),
and the rainfall pattern timing and magnitudes were such that all rainfall
intensities were within ten percent of each other, for any storm time, t. Only
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the initial 2-hours of each event was used in this analysis. The storms were

of such similarity that one would expect similar runoff responses for all
seven storms, {Qi; i=1,2,...,7). A five-minute unit time period was used in the

-~

analysis.

Step 1. For calibration purposes, the seven storms were split into a set of
four calibration and three verification storms. All possible
combinations of four calibration and three verification storms were
determined (a total of 35) for eventual decision-making sensitivity
analysis, in step 6.

Step 2a: Calibration of A:‘n’ matrix. The entries of the A“(‘) matrix, where

[ a) 0 Qg eee (0 |
I ay A 0 eee 0 |
Ar=1ay a) ay eee 0 | (25)
| . » . . I
| . . . * |
I L ] [ ] L ] [ ] I
L a, IR N S A |

must be determined such that the least-squares residual between the
computed runoff hydrographs and the measured runoff hydrographs is a
minimum.

For a single storm with effective rainfall el (for example), the usual
least-squares difference between the vectors Q! and *1 must be minimized,
where Q! is the measured runoff hydrograph and Q™ is the computed

runoff hydrograph given by
Q*‘l = A:‘) el (26)

o~

and the dimensions of Q*1 and el are nx1. The vector superscript notation

refers to the storm number. This is accomplished by noting, for e;# 0,
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| e | | e | | 0 | | o |
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A el =ay | e | vy | e | vay, le | +etar | o
| o | | o | | o | | o |
| e | [ e | | e | | o |
l en ) lena ) lena ) e )

(27)

Then, from Eq. (27), the values of [ ; i=1,2,...,n} are uniquely determined by

the well-known Gramm-Schmidt procedure in minimizing the least squares
difference between the recorded runoff Q1, and the product A’; el (see

Hromadka and Whitley, 1989, Chapter 5).

For four storms, however, the Gramm-Schmidt procedure is extended

to minimizing the residual error for all four storms simultaneously. This is
accomplished by "stacking" all four calibration storms Q' and el vectors,

i=1,2,3,4 such that Eq. (27) is extended to choosing the a} values of A% to

minimize the least squares residual in the vector equation:
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maust be determined such that the least-squares residual between all of the
recorded hydrographs and the computed hydrographs using Eqgs. (29) and (20),
is minimized.

Again, for storm 1 with effective rainfall el , this Type 2 model

computed hydrograph is
Q1 =H7 el (30)

The corresponding expansion of (30) is

e 1 [0 [ o 1 [0

I o | | e | | e | b o |

| o | | 0 | | 0 | | o |

B et =hyl e | +hy | e ] +hy [ e [rvhi 0l o |
| o | | o | | o | | o |

| o | | o | [ o | |

l o ) L o) L o) l en )
(31)
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Step 3. Using the A* and H, matrices developed above, computed runoffs

5,6,7, and H’; ei;

are developed for each verification storm A ei ;i

o~

~

5,6,7. These are the Type 1 and Type 2 model verification
estimates to be compared to the recorded runoffs from storms 5, 6,

and 7.

i
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Step4. A least-squares weighted residual is developed for both the Type 1
and Type 2 model structures, for storms 5, 6, and 7, and summed,
respectively.

Step 5.  Based on the total residual error from the verification set of storms,
the smaller-residual error model type is selected as "best".

Step 6. The above steps 1 to 5 are repeated for each combination of the
calibration/verification storms.

In this application, the Type 1 model structure was selected as "best" 33
of the 35 split-sample test combinations. The resulting A7, Toeplitz matrices

all differed, but the variations observed in the matrix components was only
on the order of 4-percent. Additionally, the calibrated H? matrices were all

quite similar to a Toeplitz matrix structure. For example, the main diagonal
terms of the HY, matrices had a standard deviation of less than 5-percent about
the mean, for each [H]”(‘) matrix.

CONCLUSIONS

A mathematical formalization is introduced for describing rainfall-
runoff (R-R) computer models and their component algorithms and
processes. With this formalization, a precise examination can be made of the
algorithmic underpinnings of various R-R modeling structures. In this
paper, the formalization is extended to R-R models whose algorithms and
processes all satisfy the mass conservation equation and also assume storage
is a function of outflow such that the first derivative of storage with respect to
outflow is positive. The formalization introduces two types of R-R computer
model structures, called "Type 1" or "Type 2", that describe almost all R-R
computer models in use today; for example, the classic unit hydrograph
method is found to be a Type 1 model structure. The formalization is then
applied to develop a procedure useful in evaluating whether a Type 1 or Type
2 model structure may be best for a particular application given a R-R data set
for model calibration purposes.

A computer model network of a catchment is composed of several
linkages and sources of runoff. Consequently, the corresponding subarea
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runoff estimators and hydrograph routing algorithms all combine in a
complex way. The nonlinearity of a routing algorithm may be dampened to
insignificance by another routing algorithm or by the contribution from a
subarea runoff estimation method, resulting in a global model that is
essentially a Type I model structure. Similarly, the nonlinearity effects
evident at a particular process in a catchment may preclude the use of a Type 1
model structure due to the improvement in accuracy afforded by a Type II
model structure.
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Figure 1. Model Schematic for a Single Subarea and a Single
Hydrograph Routing Link. '

Figure 2. Model Schematic for Four Subareas and Two
Hydrograph Routing Links.
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