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Abstract A common statistical problem is deciding

which of two possible sources, A and B, of a contaminant

is most likely the actual source. The situation considered

here, based on an actual problem of polychlorinated

biphenyl contamination discussed below, is one in which

the data strongly supports the hypothesis that source A is

responsible. The problem approach here is twofold: One,

accurately estimating this extreme probability. Two, since

the statistics involved will be used in a legal setting, esti-

mating the extreme probability in such a way as to be as

generous as is possible toward the defendant’s claim that

the other site B could be responsible; thereby leaving little

room for argument when this assertion is shown to be

highly unlikely. The statistical testing for this problem is

modeled by random variables {Xi} and the corresponding

sample mean �X ¼ 1
n Sn; Sn ¼

Pn
1 Xi; the problem consid-

ered is providing a bound e for which Prob �X� a0ð Þ� e; for

a given number a0. Under the hypothesis that the random

variables {Xi} satisfy E(Xi) £ l, for some 0 \ l \ 1,

statistical tests are given, described as ‘‘generous’’, because

e is maximized. The intent is to be able to reject the

hypothesis that a0 is a value of the sample mean while

eliminating any possible objections to the model distribu-

tions chosen for the {Xi} by choosing those distributions

which maximize the value of e for the test used.

Keywords Testing unlikely events � Extreme deviations �
PCB contamination

1 Introduction

A practical example of the problem under consideration

involves multiple sources of conservative contamination,

such as PCB contaminations, the question being whether or

not certain measured concentrations at one particular

location are the result of contaminant transport from

another location. For example, in the transport of PCBs in

sediment, the movement of water can transport both bed-

load and washload in the water and PCBs can adhere to a

wide range of particle sizes of the sediment, and depending

on the water flow characteristics, sediment can be entrained

into the water and moved downstream where it can be

deposited. The example considered in this paper is the

comparison of concentrations of the contaminant between

two locations where the sampling process involves a rela-

tively large number of grains of sediment. The specific

setting is the sampling of sediment in a water channel or

water course, where some ten thousand or more grains of

sediment are involved in the containment measurement

process as is done when measuring PCBs. In the specific

problem studied, a sample of 4,890 parts per million (ppm)

of PCB sediment was measured at a location downstream

of a possible source of PCB in sediment which had
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concentrations not exceeding 360 ppm. The question is

how likely is it that the 4,890 ppm concentration is but a

part of the upstream sediment source.

The general mathematical approach taken was to for-

mulate the problem in such a way as to be as generous as

possible, in the sense that the distributional assumptions

were made in such a way as to favor the hypothesis that the

contamination came from the upstream site, and thereby to

avoid unnecessary controversy over how the statistical

bounds were computed when this hypothesis is rejected.

Two estimates are considered. In the first estimate, a

probability distribution is developed for the population of

sediment grains at the alleged source that maximizes the

variance of the distribution of PCBs at the alleged source

and also maximizes the variance of the particularly trans-

portable sediment grains containing such PCBs to move

downstream. The variance is maximized by using the

standard Bernoulli distribution with two outcomes of

concentration, either 0 or maximum, in the sediment where

the population mean in this example is 360 ppm and the

maximum concentration is pure PCB at 1,000,000 ppm.

For the distribution with this maximum variance, the

standard Chebyshev bounds for the probability that the

upstream site was the source of the 4,890 ppm sample is

shown to be maximized, and is small for the data under

consideration. The procedure here is entirely elementary

and gives a simple example of computing generous bounds.

The second estimate uses a large deviation inequality,

with a correspondingly much smaller bound for the prob-

ability that the sample came from the upstream site. This

estimate is also maximized by the Bernoulli distribution as

before, but in this case the reason lies deeper than a simple

variance maximization.

The data at the site consisted of, in round numbers, 90

samples, each of which being the mean of the PCB con-

taminant in a large number n of particles, say n = 10,000.

These values for the mean were in general quite small, and

it was assumed on the basis of the data that the distribution

describing the PCB distribution on a particle had mean

bounded by the value 360 ppm. The value to test was a0 =

4,890 ppm. The problem was to find a bound for the

(obviously small) probability that a0 came from this site.

The data above will be normalized by dividing the

values by 106 so as to scale all the numbers to the interval

[0,1]. Then each E(Xi) (see next paragraph) is bounded by

3.60 · 10–4 = l; the value to be tested is a0 = 4.89 · 10–3;

and Xi = 0 if the particle has no PCB contamination, while

Xi = 1 denotes a particle completely composed of PCB.

The general model is: an independent set of random

variables {Xi:i = 1, ..., n} are given, each with values in

[0,1], and which are each constrained by E(Xi) £ l for some

given l, 0 \l \1. The tests will be for the sample mean

of the n test particles, �X ¼ Sn

n ; where Sn ¼
Pn

1 Xi; and will

have the form

Prob �X� a0ð Þ� e: ð1Þ

The problem considered here is, given a specific method

for computing a bound e, how can this be done in a way

which most favors the acceptance of the hypothesis that a0

is a possible value of the sample mean, i.e. which

maximizes e.

2 Chebyshev’s Inequality

One simple procedure would be to use Chebshev’s

inequality to obtain a bound as in Eq. (1). The following

elementary theorem will determine the most generous such

test.

Theorem 1 Let X be a random variable with values in

[0,1] and E(X) £l for some 0 \l \1. Then, letting var (X)

denote the variance of X, if 0\l� 1
2
; then

var Xð Þ� l 1� lð Þ

and equality is obtained if and only if X = B, B the Ber-

noulli random variable defined by Prob (B = 0) = 1 – l
and P(B = 1) = l.

If 1
2
� l\1; then

var Xð Þ� 1

4

and equality is obtained if and only if X = B0, B0 the

Bernoulli random variable defined by

Prob B0 ¼ 0ð Þ ¼ P B0 ¼ 1ð Þ ¼ 1
2
:

Proof Because 0 £ X £ 1, E(X2) £ E(X) £ l, and so

var (X) £ E (X) – E(X)2. For l� 1
2
; the function t(1 – t) has

its maximum on [0,l] at l, var (X) £ l (1 – l) = var (B),

while for 1
2
� l\1; the maximum occurs at 1

2
and

var Xð Þ� 1
4
¼ var B0ð Þ:

Suppose 0\l� 1
2

and that X has the maximum vari-

ance l (1 – l). As

l 1� lð Þ�E Xð Þ � E Xð Þ2�E X2
� �

� E Xð Þ2

¼ var Xð Þ ¼ l 1� lð Þ;

it follows that E (X) = l = E (X2). Let FX (x) = Prob(X £ x)

be the distribution function for X. Since E(X) = E(X2), the

integral $0
1 (x – x2) dFX is zero. The integrand x(1 – x) is

positive on (0,1), so X must have mass only at 0 and 1, and,

as E(X) = l, it must be that X = B.

If 1
2
� l\1; it follows as above that E Xð Þ ¼ E X2ð Þ ¼ 1

2
;

and that this maximum is attained only for B0. (
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If l� 1
2
; then (with a similar argument for 1

2
\l� 1)

use Chebyshev’s inequality to bound the probability in (1):

Prob �X� a0ð Þ ¼ Prob �X � l� a0 � lð Þ� var �Xð Þ
a0 � lð Þ2

: ð2Þ

By the independence of the Xi

var �Xð Þ ¼ 1

n2

Xn

1

var Xið Þ�
1

n
l 1� lð Þ: ð3Þ

The result above shows that if each Xi is replaced by an

independent Bernoulli random variable with mean l, the

resulting variance of the sample mean is maximized, which

maximizes the right-hand side of (2) so that this test gives

the largest value of e.
Note that there is no assumption that the Xi have a

common distribution. This leaves open the possibility of

modeling the PCB problem by having the particles consist

of several different types, each type with a different dis-

tribution of PCB.

For the PCB data, n = 10,000, l = 360 · 10–6, and

a0 = 4890 · 10–6,

Prob �X� a0ð Þ� 1:75� 10�3;

and it is unlikely that a0 is a value of the sample mean. A

sharper estimate will be given in the next section.

3 Chernoff’s large deviation inequality

The appearance of the sample mean taken over a large

number of terms suggests the use of the Central Limit

Theorem. In the application of the Central Limit Theorem,

the sample mean is scaled by subtracting its mean and

dividing by its standard deviation, and considering the

random variable

Ẑ ¼
�X � lXffiffiffiffiffiffiffiffiffiffiffiffiffi
var �Xð Þ

p ;

which is distributed approximately like a normal random

variable with mean 0 and standard deviation 1. With this

normalization, the left-hand side of Eq. (1) becomes

Prob Ẑ� a0 � lXffiffiffiffiffiffiffiffiffiffiffiffiffi
var �Xð Þ

p

 !

: ð4Þ

The presence of the variance in the denominator shows

that, if Ẑ were exactly N(0,1), the most generous choice

would be for each Xi to have the Bernoulli distribution B of

the previous section. However, there are problems with this

approach. For one, there are rough rules-of-thumb for the

application of the Central Limit Theorem approximation to

the binomial distribution B(n,p), for example that if

np(1 – p) ‡ 10 the approximation will ‘‘generally be

quite good’’. [4, p. 89] This criterion is not satisfied for the

PCB example, but using l = 3 · 3.60 · 10–4 takes care of

that in a generous manner.

The essential problem is that however the phase ‘‘gen-

erally quite good’’ is interpreted, it surely is not meant to

apply to a situation where the test variable is many standard

variations from the mean; in the PCB case, more than ten.

What is needed in this case is a large deviation result.

Chernoff’s Theorem [3, 5.4.6; 5, 1.2] gives an inequality of

the form

Prob
Sn

n
� a

� �

� e�nhðaÞ ð5Þ

where h(a) is a function depending on the distribution

function of the random variable X, the assumption in the

theorem as stated in [3] and [5] being that each Xi has the

same distribution as X. Since the statement of Chernoff’s

Theorem does not involve the variance of the sample mean,

it is not easy, as it was in Theorem 1, to see what

assumptions on the distributions Xi minimize h(a). To

establish this, a proof is given below, modeled on that of

[3], of the more general situation where the Xi need not

have a common distribution.

Theorem 2 Let X1, X2, ..., Xn be independent random

variables with values in [0,1] and E(Xi) £ l for each i for

some 0 \ l \ 1. Then for a [ l,

Prob
Sn

n
� a

� �

� e�nhBðaÞ ð6Þ

where hB (a) is the Cramer transform [2, 3.3.5] (discussed

below) for the Bernoulli random variable B.

Proof Let I(t) be the indicator function of the interval

[0,?), so that I(t) = 1 if t ‡ 0 and I(t) = 0 if t \0. Let a be

given, l \a \1. For x [0, and Sn = X1 + X2 + ... + Xn,

I Sn � nað Þ� exðSn�naÞ

and so

P
Sn

n
� a

� �

¼ P Sn � na� 0ð Þ ¼ E I Sn � nað Þð Þ

�E exðSn�naÞ
� �

¼ e�xnaE exSn
� �

¼ e�xna
Yn

i¼1

E exXi
� �

� e�xna
Yn

i¼1

1þ l
X1

n¼1

xn

n!

 !

:

Thus
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P Sn � na� 0ð Þ� e�xna
Yn

i¼1

/B xð Þ ¼ e�xna /B xð Þ½ �n

¼ e�n½ax�log /BðxÞ�:

The function /Xi
xð Þ ¼ E exXið Þ is the moment gathering

function of Xi. Since 0 £ Xi £ 1,

E Xn
i

� �
�E Xn�1

i

� �
� . . .�E Xið Þ� l;

and

/Xi
xð Þ ¼ E exXi

� �
¼ E

X1

0

xXið Þn

n!

 !

¼
X1

0

xn

n!
E Xn

i

� �

which is less than or equal to

1þ l
X1

1

xn

n!
¼ 1� lþ lex ¼ E exB

� �
¼ /B xð Þ;

where /B (x) is the moment generating function for B. Thus

Prob Sn� nað Þ� e�n½ax�log /BðxÞ�;

from which it follows that Prob (Sn ‡ na) is bounded by

inf
x [ 0

e�n½xa�log /BðxÞ� ¼ e�n supx [ 0½xa�log /BðxÞ�:

The function supx [ 0 [ax – log /B (x)] = hB (a) is the

Cramer transform of B [2, 3.3.5], [3, 5.4.1] which

establishes (6). (
The computation of the general Cramer transform is

discussed in [2, 3.3.5]. Let g xð Þ ¼ ax� log /B xð Þ: This

function is strictly concave, g(0) = 0, g0(0) = a – l [ 0,

and g(x) tends to –? as x tends to infinity, so g(x) has a

unique positive maximum at the point x0 where g0(x0) = 0.

This point is x0 ¼ log
að1�lÞ
lð1�aÞ

� �
; and

hB að Þ ¼ a log
að1� lÞ
lð1� aÞ

� �

� log
1� l
1� a

� �

:

Applied to the PCB data this gives the bound

Prob �X� a0ð Þ� e104hBða0Þ ¼ 1:29� 10�36

and it is extremely unlikely that a0 is a value of the sample

mean. It is interesting to compare this estimate with an

application of the Central Limit Theorem; in this case the

value a0 lies approximately 25 standard deviations from

the mean and the probability of the corresponding tail of

the normal is about 3 · 10–137 [1, Table 26.2]. This

number is much smaller than the large deviation estimate

given above, but it is not an accurate bound as neither the

Central Limit Theorem nor simulations can address what

happens so far out on the tail of the distribution, and so is

best regarded as a rough indication of the price paid for

using the rigorous large deviation estimate.

4 Conclusion

The results obtained apply to random variables {Xi} each

with values in [0,1] and corresponding sample mean
�X ¼ 1

n Sn; Sn ¼
Pn

1 Xi under the hypothesis that the

random variables {Xi} satisfy E(Xi) £ l, for some 0 \l \1.

Statistical tests are given, described as ‘‘generous’’ because

the bound e is maximized in the expression

Prob �X� a0ð Þ� e by choice of distribution, for a given

number a0 and for a given method of bounding this prob-

ability. For tests using Chebyshev’s inequality and

Chernoff’s large deviation inequality there is a choice of

statistical distribution which maximizes the above proba-

bility that a sample mean from that distribution was greater

than or equal to a given (relatively large) value a0. Using

either of these tests, one can reject the hypothesis that a0

is a value of the sample mean while at the same time

eliminating any possible objections that the model distri-

butions chosen for the {Xi} were biased in favor of

rejection. This is useful in legal applications. This ‘‘gen-

erosity’’ is only possible if the value a0 is extremely

unlikely. In such a case, the large deviation calculation

given here provides a rigorous estimate under circum-

stances which would commonly be handled by an

unjustified use of the Central Limit Theorem.
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