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Modeling Ground Water 
Problems Using the Complex 
Polynomial Method

Abstract
Numerical methods for solving the 

governing partial differential equations 
involved with ground water flow con-
tinue to be the subject of research and 
development. A goal in such research is 
to develop and refine numerical tech-
niques in order to provide an increase 
in numerical accuracy and reduce the 
computational effort of applying such 
techniques. In this paper, the Complex 
Polynomial Method (CPM) is applied 
towards approximating problems of 
ground water flow. Because the CPM 
exactly solves the governing PDE and 
does not involve the discretization of the 
problem domain such as required by use 
of the typical domain methods of finite 
differences and finite elements, the CPM 
affords many advantages over such typi-
cally used domain methods.
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Introduction
The development of new numerical 

techniques or the extension of existing 
techniques towards application to prob-
lems of ground water flow continues to be 
the subject of research and development. 
The vast majority of computer modeling 
programs in use today for solving ground 
water flow problems involve application 
of the domain numerical techniques 
of finite differences or finite elements. 
Both numerical techniques involve the 
discretization of the problem domain and 
boundary into a myriad of nodal points 
interconnected by linkages or domain 
elements. Both the finite differences 
and finite element methods have the 
following properties: they do not exactly 
solve the governing partial differential 
equations (PDE) that describe ground 

water flow over the problem domain; 
they do not exactly solve the boundary 
conditions continuously on the problem 
boundary; and they do not provide a 
simple approach for evaluating numeri-
cal error in the modeling estimates.

In contrast, the CPM exactly solves 
the governing PDE of the Laplace or 
Poisson type over the problem domain, 
and it does not discretize the problem 
domain. The CPM involves the use 
of complex variable monomials with 
complex coefficients determined by fit-
ting the complex polynomial to the 
prescribed boundary conditions accord-
ing to a selected measure of fit such as 
collocation or least squares error mini-
mization, among other measures of fit. 
Because complex variable monomials 
add to form a complex variable polyno-
mial, the resulting approximation func-
tion is an entire function (analytic over 
the entire complex plane) and therefore 
composed of two real valued two-dimen-
sional conjugate functions, represent-
ing the equipotential function and the 
streamline function of the ground water 
problem solution. These two conjugate 
functions each exactly solve the Laplace 
equation over the problem domain, so 
modeling error analysis is accomplished 
by using the property that the maximum 
(and also the minimum) magnitude of 
modeling error is located on the problem 
boundary. That is, because the approxi-
mation function and the exact solution 
to the subject ground water problem 
both exactly solve the Laplace equa-
tion (under mild conditions that may 
involve splitting the problem domain 
into homogeneous and possibly rescaled 
domains to accommodate anisotropic 
domains), the modeling error defined as 
the difference between these two func-
tions also solves the Laplace equation 
over the problem domain; therefore, the 
Maximum Modulus Theorem applies 
from standard complex variables theory, 

resulting in the property that the maxi-
mum magnitude of the modeling error 
must occur on the problem boundary. 
Consequently, the maximum magnitude 
of the modeling error throughout the 
entire problem domain and boundary 
is determined by simply evaluating the 
magnitude of the difference between 
the resulting CPM function and the 
prescribed boundary conditions along 
the problem boundary (both functions 
are known continuously along the prob-
lem boundary based on geohydrologic 
assumptions used to interpolate between 
ground water level readings on the prob-
lem boundary).

The first considerations of using the 
CPM occurred in the paper of Hromadka 
and Guymon (1984) [2], but further 
research and development in the CPM 
was limited by the computer power avail-
able at that time. CPM functions could 
not be efficiently developed to include 
high degree terms of complex monomi-
als, resulting in limited applicability 
to complicated ground water problems; 
however, the theoretical advantages of 
using the CPM had been established. 
With the advent of mathematically 
oriented programs such as MATLAB, 
Mathematica, and others, computation-
al power was readily available, provid-
ing the ability to work accurately with 
high degrees of complex monomials and 
thus solve large non-symmetrical matri-
ces and the resulting matrix systems. 
Furthermore, such programs contain 
impressive graphical and internal capa-
bilities that provide considerable demon-
strative power and involve surprisingly 
few programming steps. 

In the current paper, the CPM is 
applied towards modeling a ground 
water basin where several ground water 
supply wells are in use. At a well located 
nearby but outside of the study area, 
an increase in its extraction rate is 
analyzed as to its impacts on the exist-
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ing groundwater pumping trends at 
the other ground water wells. In order 
to mitigate the impacts of the subject 
increased extraction rate, an increase 
in ground water banking at a nearby 
ground water banking percolation basin 
is examined. The resulting CPM model 
provides both the equipotentials and the 
conjugate streamlines for the subject 
application problem, which are plotted 
together using Mathematica. The entire 
computer code, as well as examples of 
the input and output for this problem, 
is included as Appendix A, which dem-
onstrates the small computer program-
ming effort needed in order to apply the 
CPM. The user can directly modify the 
Mathematica code and see an update 
to the associated results and graphics, 
a property available when using such 
mathematically based computer pro-
grams.

Background
The CPM is a numerical procedure 

that uses a set of complex variable 
monomials with complex coefficients to 
form a complex variable polynomial for 
use as an approximation function. The 
monomial coefficients are calculated by 
satisfying the problem boundary con-
ditions. Because complex monomials 
can be resolved into two, real variable 
two-dimensional functions, commonly 
known as the real and imaginary parts of 
the complex function, both parts are han-
dled as individual functions. Hromadka 
and Guymon (1984) first developed the 
CPM variant of the Complex Variable 
Boundary Element Method (CVBEM) 
and successfully applied it to a limited 
set of engineering problems [2]; how-
ever, generally available computational 
power of the time limited the CPM to low 
degree complex polynomials.

The CPM was recently used to solve 
PDE of the Laplace equation type using 
the computer program, Mathematica, 
which provides a significant increase in 
numerical accuracy achieved by use of 
standard computer programs based on 
computer languages such as FORTRAN 
and others.  As a result of developing the 
CPM application on Mathematica, Poler 
et al [4] showed that complex polynomi-
als in excess of degree thirty-five were 
computationally efficient, and the vari-
ous graphical features of Mathematica 
were directly employable to such bound-
ary value problems. This computational 
success provided a considerable advan-
tage over the other computer solutions 
applied with the CPM such as seen in 

[2] and has returned the CPM as being 
a strong topic for further research. 
The computational accuracy provided 
by such off-the-shelf computer programs 
such as Mathematica and MATLAB may 
open the door for more mathematical 
solutions of such boundary value prob-
lems which involve exact solutions of 
the PDE, and less reliance on numerical 
techniques that only approximate solu-
tions to the PDE.

Theory
Complex polynomials are entire func-

tions, being analytic over the entire 
complex plane; therefore, both of the 
real and imaginary parts of the complex 
polynomial satisfy the Laplace Equation. 
Additionally, the real and imaginary 
parts of the complex function form a 
conjugate pair which can represent the 
streamline function and the associated 
potential function as parts of the solu-
tion to the boundary value problem. This 
feature of the CPM alone provides con-
siderable mathematical advantages over 
the usual domain numerical methods in 
common use.

In the current paper, the CPM is 
extended to use a least-squares error 
minimization technique to match the 
problem boundary conditions continu-
ously along the entire problem bound-
ary and not just at a set of points 
located on the boundary. With this new 
approach for the CPM, convergence is 
guaranteed as the complex polynomial 
degree increases (see Theorem provided 
in [5]), and the computational advan-
tages afforded by Mathematica apply as 
reported in [4].

Method
To apply the least-squares error mini-

mization approach to developing the 
CPM coefficients, the numerical proce-
dure presented in [1] is used. Only a brief 
description of this Best Approximation 
technique is presented here for the 
reader’s convenience.

We are given a domain and boundary 
on which ground water flow is modeled 
with a complex function subject to the 
Laplace Equation. The real part of the 
function models the ground water level, 
and the imaginary part models the 
ground water flow streamlines. A set of 
boundary conditions representing the 
ground water levels on the boundary are 
given. We want to determine the best 
approximation of the governing PDE 

using a complex polynomial that is fitted 
to the problem boundary conditions.

We choose a set of linearly indepen-
dent basis functions and construct a set 
of global vectors from those basis func-
tions. We ortho-normalize those global 
vectors using the Gramm-Schmidt pro-
cess, and use the resulting basis vectors 
to approximate the solution as a vector in 
Hilbert space. The complex coefficients 
of best fit are the generalized Fourier 
coefficients.

Using the generalized Fourier coef-
ficients and a back-substitution routine, 
the coefficients of the approximation 
function are determined that best approx-
imate the problem boundary conditions 
in a least squares sense.

Application
An important problem in civil engi-

neering and geohydrology is the analysis 
of ground water flow impacts due to 
changes in pumpage or introduction of 
new ground water wells in an aquifer. 
Typically, domain type numerical meth-
ods are applied towards approximation 
of the governing PDE describing ground 
water flow. In the following application 
problem, the CPM is applied. Use of the 
CPM considerably reduces data input 
requirements over the requirements 
needed by domain type numerical tech-
niques for similar problems.

In this application, the various ground 
water flow properties are assumed to be 
homogeneous and isotropic throughout 
the problem domain. It is noted that 
non-homogeneous or anisotropic proper-
ties of the ground water regime, such as 
parameters for porosity, permeability, 
and so forth, can be accommodated by 
re-scaling or by solving simultaneous 
sub-problems, using the CPM (see [3] 
for examples using the CVBEM numeri-
cal technique). The CPM is applied to 
an irregular domain covering a 1,200 
square mile area where boundary condi-
tions of ground water levels are known 
from readings obtained from water wells 
and borings located along the problem 
boundary. Two large extraction wells are 
located to the northeast of the subject 
study area and a large ground water 
banking percolation basin is located to 
the southwest of the study area. All 
CPM models use a complex polynomial 
of degree fifteen, comprising thirty-one 
complex monomials. It is noted that 
the complex monomials are generated 
internally by the provided Mathematica 
code [4].
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Two CPM models are developed in 
Figure 1, representing the original prob-
lem initial conditions and the steady-
state conditions corresponding to a 
twofold increase in the extraction rate 
at the most northerly extraction well. 
Figure 1(a), which is obtained from the 
Mathematica application developed for 
this problem, shows the CPM model of 
ground water levels under the initial 
scheme for pumping and ground water 
banking. In comparison, Figure 1(b) 
shows the steady-state water levels cor-
responding to the increased extraction 
rate. The third and fourth CPM models, 
in Figure 2, determine what increase in 
ground water banking is needed to miti-
gate the impacts of the increased ground 
water extraction. Figure 2(a) shows the 
model which returns all wells to a level 
at or above their pre-extraction level. It 
requires a nearly fifty percent increase 
in the ground water banking rate at the 
percolation basin. Figure 2(b) offers an 
alternative solution, where the original 
average ground water level is achieved. 
It requires twenty percent less increase 
in the ground water banking of the per-
colation basin compared to the previous 
option. The boundary values from the 
CPM of all four models are continuously 
graphed in Figure 3 for comparison.

Conclusions
The CPM is applied to ground water 

problems using the computer program 
Mathematica, although similar pro-
grams such as MATLAB could also be 
used. The CPM develops a complex 
polynomial that exactly solves the gov-
erning PDE of ground water flow over 
the problem domain and approximately 
solves the problem boundary conditions. 
Because computer programs that use 
typical finite difference and finite ele-
ment methods do not exactly solve the 
governing PDE and, like the CPM, only 
approximately fit the problem boundary 
conditions continuously on the prob-
lem boundary, the CPM provides a 
considerable improvement in model-
ing accuracy. Additionally, such domain 
methods involve the discretization of the 
problem domain and boundary, whereas 
the CPM uses no discretization at all. 
The CPM provides two real variable 
two-dimensional conjugate functions, 
representing the problem streamline 
function and problem potential function, 
respectively. 

Modeling error analysis is readily 
accomplished by examining the model-
ing function fit to the problem bound-

ary conditions because the maximum 
magnitude of modeling error within the 
problem domain is less than or equal 
to the maximum magnitude of error in 
fitting the problem boundary conditions. 
The difference in boundary condition 
estimates corresponding to measured 
values can be reduced by including addi-
tional complex monomials in the result-
ing complex polynomial approximation 
function. For this application problem, 
the complex polynomial degree used is 
fifteen. It is noted that the CPM model 
power can be easily increased by simply 
entering a higher number in the provided 
program when prompted to enter the 
number of basis functions.

The presented application problem 
evaluates the impacts of increasing the 
extraction rate of ground water at a 
regional water supply well and then 
determining the mitigating offset by 
increasing ground water banking at a 
banking percolation basin to return the 
interior water supply well ground water 
levels close to pre-extraction levels. The 
Mathematica code and application is 
included in the Appendix. 
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(a) Initial steady state approximate solution 
of in-situ conditions.

(b) Final steady state approximate solution 
with impact of increased extraction rate.

Figure 1. CPM models of subject study area before and after the increase in the extraction rate 
of the most northerly extraction well.  The ground water levels are depicted with the contour 
shading, where lighter shades are the higher levels, and the ground water flow streamlines are 
shown as solid lines.  The boundary conditions from water wells and borings are shown as small 
white dots.  The percolation basin is the large black dot in the bottom-left; the extraction wells 
are the large black dots in the top-right; and the wells of interest are the black dots inside the 
subject study area.

(a) First adjusted steady state approximate 
solution with re-charge.

(b) Second adjusted steady state approxi-
mate solution with re-charge.

Figure 2. CPM models of subject study area after the increased in-flow at the ground water 
banking percolation basin.  The same format from Figure 1 is used.
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Figure 3. All four CPM models are compared across wells of interest.  The horizontal axis represents the linear distance from the percolation 
basin in miles.  The vertical axis represents the ground water level.  The original ground water levels are depicted with the solid black line.  The 
ground water levels resulting from the increased extraction rate are depicted with the black dashed line.  The first and second adjusted solutions 
are the gray dot-dashed line and dotted line, respectively.
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Figure A1. Example Microsoft Excel file for importing into Mathematica.  No column headings should be included.  The three columns represent 
the horizontal coordinate, the vertical coordinate, and the ground water level.
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Figure A2. Example data from the first adjusted solution.
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STATEMAP & AIPG- MAPPING FOR THE FUTURE

Figure A3. Generic CPM Mathematica code.  The full file path must be specified (ie. “D:\My Documents\...).  The number of basis functions directly 
corresponds to the degree of the complex polynomial approximation function.
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Figure A4. Example Mathematica output of first adjusted solution.  Shown 
are the potential and streamline functions and the 3-D plot and contour plot 
of the approximate solution.


