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Abstract

Numerical methods for solving the
governing partial differential equations
involved with ground water flow con-
tinue to be the subject of research and
development. A goal in such research is
to develop and refine numerical tech-
niques in order to provide an increase
in numerical accuracy and reduce the
computational effort of applying such
techniques. In this paper, the Complex
Polynomial Method (CPM) is applied
towards approximating problems of
ground water flow. Because the CPM
exactly solves the governing PDE and
does not involve the discretization of the
problem domain such as required by use
of the typical domain methods of finite
differences and finite elements, the CPM
affords many advantages over such typi-
cally used domain methods.
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Introduction

The development of new numerical
techniques or the extension of existing
techniques towards application to prob-
lems of ground water flow continues to be
the subject of research and development.
The vast majority of computer modeling
programs in use today for solving ground
water flow problems involve application
of the domain numerical techniques
of finite differences or finite elements.
Both numerical techniques involve the
discretization of the problem domain and
boundary into a myriad of nodal points
interconnected by linkages or domain
elements. Both the finite differences
and finite element methods have the
following properties: they do not exactly
solve the governing partial differential
equations (PDE) that describe ground
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water flow over the problem domain;
they do not exactly solve the boundary
conditions continuously on the problem
boundary; and they do not provide a
simple approach for evaluating numeri-
cal error in the modeling estimates.

In contrast, the CPM exactly solves
the governing PDE of the Laplace or
Poisson type over the problem domain,
and it does not discretize the problem
domain. The CPM involves the use
of complex variable monomials with
complex coefficients determined by fit-
ting the complex polynomial to the
prescribed boundary conditions accord-
ing to a selected measure of fit such as
collocation or least squares error mini-
mization, among other measures of fit.
Because complex variable monomials
add to form a complex variable polyno-
mial, the resulting approximation func-
tion is an entire function (analytic over
the entire complex plane) and therefore
composed of two real valued two-dimen-
sional conjugate functions, represent-
ing the equipotential function and the
streamline function of the ground water
problem solution. These two conjugate
functions each exactly solve the Laplace
equation over the problem domain, so
modeling error analysis is accomplished
by using the property that the maximum
(and also the minimum) magnitude of
modeling error is located on the problem
boundary. That is, because the approxi-
mation function and the exact solution
to the subject ground water problem
both exactly solve the Laplace equa-
tion (under mild conditions that may
involve splitting the problem domain
into homogeneous and possibly rescaled
domains to accommodate anisotropic
domains), the modeling error defined as
the difference between these two func-
tions also solves the Laplace equation
over the problem domain; therefore, the
Maximum Modulus Theorem applies
from standard complex variables theory,

resulting in the property that the maxi-
mum magnitude of the modeling error
must occur on the problem boundary.
Consequently, the maximum magnitude
of the modeling error throughout the
entire problem domain and boundary
is determined by simply evaluating the
magnitude of the difference between
the resulting CPM function and the
prescribed boundary conditions along
the problem boundary (both functions
are known continuously along the prob-
lem boundary based on geohydrologic
assumptions used to interpolate between
ground water level readings on the prob-
lem boundary).

The first considerations of using the
CPM occurred in the paper of Hromadka
and Guymon (1984) [2], but further
research and development in the CPM
was limited by the computer power avail-
able at that time. CPM functions could
not be efficiently developed to include
high degree terms of complex monomi-
als, resulting in limited applicability
to complicated ground water problems;
however, the theoretical advantages of
using the CPM had been established.
With the advent of mathematically
oriented programs such as MATLAB,
Mathematica, and others, computation-
al power was readily available, provid-
ing the ability to work accurately with
high degrees of complex monomials and
thus solve large non-symmetrical matri-
ces and the resulting matrix systems.
Furthermore, such programs contain
impressive graphical and internal capa-
bilities that provide considerable demon-
strative power and involve surprisingly
few programming steps.

In the current paper, the CPM is
applied towards modeling a ground
water basin where several ground water
supply wells are in use. At a well located
nearby but outside of the study area,
an increase in its extraction rate is
analyzed as to its impacts on the exist-
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ing groundwater pumping trends at
the other ground water wells. In order
to mitigate the impacts of the subject
increased extraction rate, an increase
in ground water banking at a nearby
ground water banking percolation basin
is examined. The resulting CPM model
provides both the equipotentials and the
conjugate streamlines for the subject
application problem, which are plotted
together using Mathematica. The entire
computer code, as well as examples of
the input and output for this problem,
is included as Appendix A, which dem-
onstrates the small computer program-
ming effort needed in order to apply the
CPM. The user can directly modify the
Mathematica code and see an update
to the associated results and graphics,
a property available when using such
mathematically based computer pro-
grams.

Background

The CPM is a numerical procedure
that uses a set of complex variable
monomials with complex coefficients to
form a complex variable polynomial for
use as an approximation function. The
monomial coefficients are calculated by
satisfying the problem boundary con-
ditions. Because complex monomials
can be resolved into two, real variable
two-dimensional functions, commonly
known as the real and imaginary parts of
the complex function, both parts are han-
dled as individual functions. Hromadka
and Guymon (1984) first developed the
CPM variant of the Complex Variable
Boundary Element Method (CVBEM)
and successfully applied it to a limited
set of engineering problems [2]; how-
ever, generally available computational
power of the time limited the CPM to low
degree complex polynomials.

The CPM was recently used to solve
PDE of the Laplace equation type using
the computer program, Mathematica,
which provides a significant increase in
numerical accuracy achieved by use of
standard computer programs based on
computer languages such as FORTRAN
and others. As aresult of developing the
CPM application on Mathematica, Poler
et al [4] showed that complex polynomi-
als in excess of degree thirty-five were
computationally efficient, and the vari-
ous graphical features of Mathematica
were directly employable to such bound-
ary value problems. This computational
success provided a considerable advan-
tage over the other computer solutions
applied with the CPM such as seen in
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[2] and has returned the CPM as being
a strong topic for further research.
The computational accuracy provided
by such off-the-shelf computer programs
such as Mathematica and MATLAB may
open the door for more mathematical
solutions of such boundary value prob-
lems which involve exact solutions of
the PDE, and less reliance on numerical
techniques that only approximate solu-
tions to the PDE.

Theory

Complex polynomials are entire func-
tions, being analytic over the entire
complex plane; therefore, both of the
real and imaginary parts of the complex
polynomial satisfy the Laplace Equation.
Additionally, the real and imaginary
parts of the complex function form a
conjugate pair which can represent the
streamline function and the associated
potential function as parts of the solu-
tion to the boundary value problem. This
feature of the CPM alone provides con-
siderable mathematical advantages over
the usual domain numerical methods in
common use.

In the current paper, the CPM is
extended to use a least-squares error
minimization technique to match the
problem boundary conditions continu-
ously along the entire problem bound-
ary and not just at a set of points
located on the boundary. With this new
approach for the CPM, convergence is
guaranteed as the complex polynomial
degree increases (see Theorem provided
in [5]), and the computational advan-
tages afforded by Mathematica apply as
reported in [4].

Method

To apply the least-squares error mini-
mization approach to developing the
CPM coefficients, the numerical proce-
dure presented in [1] is used. Only a brief
description of this Best Approximation
technique is presented here for the
reader’s convenience.

We are given a domain and boundary
on which ground water flow is modeled
with a complex function subject to the
Laplace Equation. The real part of the
function models the ground water level,
and the imaginary part models the
ground water flow streamlines. A set of
boundary conditions representing the
ground water levels on the boundary are
given. We want to determine the best
approximation of the governing PDE

using a complex polynomial that is fitted
to the problem boundary conditions.

We choose a set of linearly indepen-
dent basis functions and construct a set
of global vectors from those basis func-
tions. We ortho-normalize those global
vectors using the Gramm-Schmidt pro-
cess, and use the resulting basis vectors
to approximate the solution as a vector in
Hilbert space. The complex coefficients
of best fit are the generalized Fourier
coefficients.

Using the generalized Fourier coef-
ficients and a back-substitution routine,
the coefficients of the approximation
functionaredetermined thatbestapprox-
imate the problem boundary conditions
in a least squares sense.

Application

An important problem in civil engi-
neering and geohydrology is the analysis
of ground water flow impacts due to
changes in pumpage or introduction of
new ground water wells in an aquifer.
Typically, domain type numerical meth-
ods are applied towards approximation
of the governing PDE describing ground
water flow. In the following application
problem, the CPM is applied. Use of the
CPM considerably reduces data input
requirements over the requirements
needed by domain type numerical tech-
niques for similar problems.

Inthis application, the various ground
water flow properties are assumed to be
homogeneous and isotropic throughout
the problem domain. It is noted that
non-homogeneous or anisotropic proper-
ties of the ground water regime, such as
parameters for porosity, permeability,
and so forth, can be accommodated by
re-scaling or by solving simultaneous
sub-problems, using the CPM (see [3]
for examples using the CVBEM numeri-
cal technique). The CPM is applied to
an irregular domain covering a 1,200
square mile area where boundary condi-
tions of ground water levels are known
from readings obtained from water wells
and borings located along the problem
boundary. Two large extraction wells are
located to the northeast of the subject
study area and a large ground water
banking percolation basin is located to
the southwest of the study area. All
CPM models use a complex polynomial
of degree fifteen, comprising thirty-one
complex monomials. It is noted that
the complex monomials are generated
internally by the provided Mathematica
code [4].
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Two CPM models are developed in
Figure 1, representing the original prob-
lem initial conditions and the steady-
state conditions corresponding to a
twofold increase in the extraction rate
at the most northerly extraction well.
Figure 1(a), which is obtained from the
Mathematica application developed for
this problem, shows the CPM model of
ground water levels under the initial
scheme for pumping and ground water
banking. In comparison, Figure 1(b)
shows the steady-state water levels cor-
responding to the increased extraction
rate. The third and fourth CPM models,
in Figure 2, determine what increase in
ground water banking is needed to miti-
gate the impacts of the increased ground
water extraction. Figure 2(a) shows the
model which returns all wells to a level
at or above their pre-extraction level. It
requires a nearly fifty percent increase
in the ground water banking rate at the
percolation basin. Figure 2(b) offers an
alternative solution, where the original
average ground water level is achieved.
It requires twenty percent less increase
in the ground water banking of the per-
colation basin compared to the previous
option. The boundary values from the
CPM of all four models are continuously
graphed in Figure 3 for comparison.

Conclusions

The CPM is applied to ground water
problems using the computer program
Mathematica, although similar pro-
grams such as MATLAB could also be
used. The CPM develops a complex
polynomial that exactly solves the gov-
erning PDE of ground water flow over
the problem domain and approximately
solves the problem boundary conditions.
Because computer programs that use
typical finite difference and finite ele-
ment methods do not exactly solve the
governing PDE and, like the CPM, only
approximately fit the problem boundary
conditions continuously on the prob-
lem boundary, the CPM provides a
considerable improvement in model-
ing accuracy. Additionally, such domain
methods involve the discretization of the
problem domain and boundary, whereas
the CPM uses no discretization at all.
The CPM provides two real variable
two-dimensional conjugate functions,
representing the problem streamline
function and problem potential function,
respectively.

Modeling error analysis is readily
accomplished by examining the model-
ing function fit to the problem bound-
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(a) Initial steady state approximate solution
of in-situ conditions.

(b) Final steady state approximate solution
with impact of increased extraction rate.

Figure 1. CPM models of subject study area before and after the increase in the extraction rate
of the most northerly extraction well. The ground water levels are depicted with the contour
shading, where lighter shades are the higher levels, and the ground water flow streamlines are
shown as solid lines. The boundary conditions from water wells and borings are shown as small
white dots. The percolation basin is the large black dot in the bottom-left; the extraction wells
are the large black dots in the top-right; and the wells of interest are the black dots inside the

subject study area.

[ 10 2 10 |

(a) First adjusted steady state approximate
solution with re-charge.

(b) Second adjusted steady state approxi-
mate solution with re-charge.

Figure 2. CPM models of subject study area after the increased in-flow at the ground water
banking percolation basin. The same format from Figure 1 is used.

ary conditions because the maximum
magnitude of modeling error within the
problem domain is less than or equal
to the maximum magnitude of error in
fitting the problem boundary conditions.
The difference in boundary condition
estimates corresponding to measured
values can be reduced by including addi-
tional complex monomials in the result-
ing complex polynomial approximation
function. For this application problem,
the complex polynomial degree used is
fifteen. It is noted that the CPM model
power can be easily increased by simply
entering a higher numberin the provided
program when prompted to enter the
number of basis functions.

The presented application problem
evaluates the impacts of increasing the
extraction rate of ground water at a
regional water supply well and then
determining the mitigating offset by
increasing ground water banking at a
banking percolation basin to return the
interior water supply well ground water
levels close to pre-extraction levels. The
Mathematica code and application is
included in the Appendix.
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Figure 3. All four CPM models are compared across wells of interest. The horizontal axis represents the linear distance from the percolation
basin in miles. The vertical axis represents the ground water level. The original ground water levels are depicted with the solid black line. The
ground water levels resulting from the increased extraction rate are depicted with the black dashed line. The first and second adjusted solutions
are the gray dot-dashed line and dotted line, respectively.
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Figure A1. Example Microsoft Excel file for importing into Mathematica. No column headings should be included. The three columns represent
the horizontal coordinate, the vertical coordinate, and the ground water level.

www.aipg.org MARCH/APRIL 2009 « TPG 43



X v Potential
1 28.06| -16.03413

ik 28.12|-18.51991
123 27.38|-21.04653
1.23 26.862| -23.13524
1238 25 752| -27.79659
1.24 25 086]-30.74037
1246 24 272|-34 47645
1.25 2294 -409702
1.6 22 21-43.91996
18 20.72|-51.31856
22 19.98) -54 89665
2.6 18.5| -63.12561
2689 17.32] -70.8874
3 16.28] -77.58513

3.9 15.54| -80.55262
418 14.06[-91.74736
422 12.713|-103.7472
4.4 11.84|-111.5519

] 10.36| -124 3272
5738 9255]-132 1891
6 B.14]|-143.1609

6.48 7.72|-143 7354
6.8 6.612|-153.9704
15 6216}-148 7214
7.69 5114]|-156 2532

8 4.441-157 0613

8.5 4 07|-152 2785

g 4 366]-143.7832

9.9 5.18|-128 0786
10.8 5.2[-118 0635
11.3 511]-113 2759
1278 478 -100 2033
14.23 4.8|-87.17173
16.43 51|-6855292
18.123 5.2|-52 39653
203 6 142| -38 6738
22 1 6.033| -28 57864
2356 5987 -20.8585
25.8 6.003|-9.719663
271 6.11]-3.429184
28.566 6.168] 2959664
2988 63| 8585022
31.34 6.98| 16.55577
33123 7214| 23 24366
34789 7.86| 306607
36.31 B.08| 3527248
37.28 8333 3840577
38.004 8.94| 4244116
384 9.87| 47.36351
38458 10.86| 5221866

X v FPotential
38.46 12.16| 58.89763
38.502 13.45| 66.09742
38.332 1486 7441311
3814 15.93] 81.25401
37 89 17.12| 89 54963
37.245 18.46( 99.56259
36,999 19 17 1064776
36.754 20.12] 114.161
36.118 21.34| 1255208
35.98 22567 139599
351 23.754| 147 8014
3515 25 086( 1620197
T § 25382 166511
355 259| 172 6389
3544 26 788( 174 0463
3532 27972 171.0961
3519 28.86) 1681216
351 29.6| 1661738
34 30.34] 1636946
332 30.71] 1637237
324 30.59 1632936
31 30.34| 1614113
295 2997 1559527
2597 29.6[ 1513431
28 296| 1465095
2708 30414| 1495393
264 31.08| 151.765
251 31228| 140.469
233 30932) 1195397
2285 296822 1082389
222 28.86| 9683998
214 28.12| 86.22891
206 278684 78.81
19.9 27 824| 73.43426
18.2 27.75| 61.04279
173 27 528 5393778
151 27.38| 39.34705
13.8 27 232 31.05445
12 26 714| 1893662
102 2627 7.922375
8.4 26.64| 1.237313
71 27.38|-1.166709
6667 28.22) 0444095
b 28.86) 0277848
5.124 29.456| -0.8059806
3.8 30.192) -284677

3 30.34| -4 945541

2 30.34| -6.012084

1.8 30.34(-8.599612
1.2 29 6| -12 84332

Figure A2. Example data from the first adjusted solution.
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STATEMAP & AIPG- MAPPING FOR THE FUTURE

Imports a chart from Microsoft Excel in the specified file. The chart contains evaluation points with which to solve the PDE. The user is prompted to
the number of complex monomial basis functions, ., to approximate the solution.

ImportedData = Flatten [Import["File Path"], 1];

G = Take [ImportedData, All, 2]/

Soluticn = ImportedData[[All, 3]];

n = Input["Number of complex monomial basis functions: "];

Generates the real and imaginary parts of the approximate sclution with # complex monomial basis functions and (2n+1) unknown coefficients.

¢olx_, ¥v. 1=4 +CamplexExpand[Re[i: (A2 + 1L A2 ma1) (x+iy]"‘]] :
m=l

n

¥[x ., v] =CumplexExpa.nd[IIl[Z (A2 + 8 A2 e1) {X'PiY}H” i
m=l

Constructs a matrix, where each column is a vector with a basis function evaluated at each evaluation point.
A= Table[d,, #[G[[i, 111, G[[4, 2111, {i, Length[G]}, (3, 2n+1}];
VactorSet = Tabla[A[[All, i]], {i, 2n+ 1}];

Do[Fn = VectoxrSet[[m]], {m, 2n+1}]

Orthonormalizes the columns of the A-matrix according to Gramm - Schmidt using the standard inner product, the dot product.
OrthoNormVectSet = Orthogonalize[VectorSet] )

Do[#, = OrthoNormVectSet[[m]], {m, 2n+1}]

Calculates the generalized Fourier coefficients by taking the inner product of the given potentials and the orthononmal basis vectors.

Do[A, = Solution.f,, {m, 2n+1}]

Reverses the orthonormalization through back substitution to find the coefficients for the approximate sohution.

Do[C; = Take|[RowReduce [Join|[Transpose [Take[VectorSet, 1]], Transpose|(F.}], 2]], (1, 1}, -1],
{i,2n+ 1]]

2 n+l

no[al - ) AmCallal), (4, 2n.1}]

mei

Outputs the final approximate solution using # complex monomial basis functions.

e[x, y]
¥(x, y)

Outputs the potential function, stream function, and evaluation points in a three-dimensional plot.

Graphl = Plot3D[¢([x, v], {x, Min[G[[ALll, 1]]] - .1, Max[G[[A1l, 1]]] + .1},
{y, Min[G[[ALLl, 2]]] - .1, Max[G[[ALl, 2]]] + .1}, PlotStyle -+ Hue[0]];
Graph2 = Plot3D([¢([x, v], {x, Min[G[[A11, 1]]] - .1, Max[G[[All, 1]]] + .1},
{y, Min[G[[A1l, 2]]] - .1, Max[G[[All, 2]]] + .1}, PlotStyle -+ Hue[0.15]];
Graph3 = Graphics3D[{PointSize[Large], Hue[0.7], Point[ImportedData]}]:
Show [Graphl, GraphZ, Graph3]

Outputs the potential function, stream function, and evaluation points in a contour plot.

Basin = {2, 2}

ExtractWells = {{28, 35}, {38, 26}}/

Graphd = ContourPlat([¢#[x, v], {x, 0, 40}, {y, 0, 38}, Contourstyle -+ None, DisplayFunction » Idantity,
AspectRatioc -+ Automatic, ColorFunction -+ "GrayTones"];

Graph5 = ContourPlot[¥([x, v], {x, 0, 40}, {y, 0, 38}, ContourShading - False, DisplayFunction - Identity,
AspectRatio -+ Automatic];

Graph6 = Graphics|{PointSize[.01], White, Point[G] }]:

Graph7 = Graphics|{FPointSize[.04], Black, Point [ExtractWells]}]:

Graph8 = Graphics|{Point8ize[.06], Black, Point[Basin]}];

Graph9 = Graphics | {PointS8ize[.02], Black, Point[Wells]}]:

Show [Graphd, Graph5, Graphé, Graph7, Graph8, Graph9]

Figure A3. Generic CPM Mathematica code. The full file path must be specified (ie. “D:\My Documents\...). The number of basis functions directly
corresponds to the degree of the complex polynomial approximation function.
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Dratprits the final approximate sohition using @ comples monomial b fondtom.

#fx, ¥]
wix. ¥1

[-HE8. 490 - 30,9759 % + 41,8596 12,0038 x" - 0. 987564 x* - 0.000115439 0.00457161 x* - 0000322600 x” - 7.54280» 107" =" - 5. 06680~ 107" x
6555491077 59 = 2. 38901 10737 x** . 1. 036TE 2 207 7T L 2 E0535 10 - 708348 x 107 x* 27422 w 107 & m.?a;,. 123043 x y- 406305 y-
38658 x" y- 0 51743 1" o 0.0271924 ¥ y - £.000152186 x" y - 6. 0000764152 %" y - 3. 18438 = 10" 2" y - 4. TEL3S . 1070
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Drtputs the potensial function, stresm fumesion, and evahmsion pomes i a throe-dmensional ploe

Graphl « PlotdD{g(=. ). {=. Min[G[[A2L, 1]]] - .1, Mam[@[[ALL, 1]1] « .2}, (y. Mam[S[[AZL, 2]]] - .2, Max[G[{Al1, 2]]) + .1}, PlotStyle = Hua(0]];
Graph? » FlotdD[¢ (=, ¥], {x, Min[G[[A2L, 1]]] = .1, Mam[G[[AL, 1]]] » .1}, {y. Min[G[[ALL, 2]]] - .1, Man[G[[A1L, 2]]] » .1}, PlotStyle - Hue[0.15]];
Oraphl » GraphicsiD[{FPointSize|Large] . Bus[0.7]. Point[IsportedData] }]

Ehow [Gzaphl, Sraphl, Ozaphi]

Cratputs the potsnsal function, stream faneson, and evabation pomts 5 & oo plot

Basin e {2, 2}

Extractiells = ({28, 35}, (38, 26));

Graphd =« ContourPlot{ef=, 5], (= 0, 40}, (y. 0. 38}, ContourStyls - None K DisplayFunction -« Jdentity. Aspectlatis -« Automatic,
Colerfunction = “GrayTonas®] ;

GraphS « ContourPlot[wx, yv], (=, 0, 40}, (v, 0, 38}, img = Fales, DisplayPu = Idantity, Asps tis - 1

Graphé « Graphica|{FointSiza[.01], Whits, Poine[d3)}]).

GzaphT = Oraphics [ {FointIize[.04], Black. Point [ExtractWalla]}]

Graphll « Graphica[{PeintSine[.06] . Black, Poink [Basin]}]:

Graph$ = Graphios[{FointSize[.02], Black, Peint[Wells]}]:

Show [Ozaphd, Graphs, Oraph6, Ozaphl, dzapht, Grapk3s]

of the approximate solution.

Figure A4. Example Mathematica output of first adjusted solution. Shown
are the potential and streamline functions and the 3-D plot and contour plot
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