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A simpler proof is given of the result of (Whitley and Hromadka II, Numer Methods Partial Differential Eq
21 (2005) 905–917) that, under very mild conditions, any solution to a Dirichlet problem with given con-
tinuous boundary data can be approximated by a sum involving a single function of one complex variable;
any analytic function not a polynomial can be used. This can be applied to give a method for the numerical
solution of potential problems in dimension three or higher. © 2009 Wiley Periodicals, Inc. Numer Methods
Partial Differential Eq 000: 000–000, 2009
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I. INTRODUCTION

A new method for the numerical solution of the Dirichlet problem was given in [1] in which
it was shown that under mild conditions on a bounded open set � any solution to a Dirichlet
problem with given continuous boundary data on ∂� can be approximated by a sum involving a
single function of one complex variable; any analytic function not a polynomial can be used. This
approximation has a form simple enough that it can be used in the numerical solution of Dirichlet
problems in dimension three or higher. The proof given here, a substantial simplification of that
given in [1], is obtained by proving the theorems of [1] in reverse order.

II. HARMONIC POLYNOMIALS

A complex-valued polynomial P(x) on RN can be written using the standard multi-index nota-
tion: α1, α2, . . . , αN non-negative integers, α = (α1, α2, . . . , αN), x = (x1, x2, . . . , xN), xα =
x

α1
1 x

α2
2 . . . x

αN
N , as the finite sum P(x) = ∑

α Cαx
α . This sum can be written as P(x) = ∑

Pm(x),
where Pm(x) = ∑

|α|=m Cαx
α , with |α| = α1 + · · · + αN , is a homogeneous polynomial of
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degree m, i.e., Pm(λx) = λmPm(x) for λ real. In this way of writing P(x), the polynomials Pm(x)

are uniquely determined and P(x) is harmonic if and only if each Pm(x) is harmonic, all of which
follows directly upon substituting λx for x and considering the resulting polynomial in λ [2, pp.
23–24]. Consequently, in studying harmonic polynomials on RN it generally suffices to consider
the harmonic polynomials on RN which are homogeneous of degree m, denoted by Hm(RN).

As noted in [3, 2.1], and [2, pp. 81–82], the space Hm(R2) has a “very simple form” in that it
has a basis consisting of the functions Re(x1 + i x2)

m and Im(x1 + i x2)
m, which using complex-

valued functions can be written

Hm(R2) = sp{(x1 + ix2)
m, (x1 − ix2)

m)}

The purpose of this section is to establish a similar representation for general N . The following
elementary lemma [1] is useful.

Lemma 1. Let h be an harmonic function of two variables defined on an open set U in R2,
and let a and b be two perpendicular vectors, a · b = 0, of equal length |a| = |b| in RN . Then
h(a · x, b · x) is an harmonic function for x in RN and (a · x, b · x) in U.

Proof. Set H(x) = h(a · x, b · x). The result follows from the computation of the Laplacian
�H(x):

h11(a · x, b · x)

N∑

1

a2
j + h22(a · x, b · x)

N∑

1

b2
j + 2h12(a · x, b · x)

N∑

1

ajbj . (1)

Let the set AN consist of the pairs a,b of orthogonal points in RN , a ·b = 0, having unit length,
|a| = |b| = 1, and define the complex vector space spanned by functions on RN of the form
(a · x + i b · x)m:

AN
m = sp{(a · x + i b · x)m : for pairs a, b in AN }

Each function in AN
m is harmonic by Lemma 1.

The choice of whether to consider real-valued harmonic functions [3] or complex-valued har-
monic functions [2] is merely a question of which notation is more convenient, like the choice of
considering Fourier series as series in {sin(nθ), cos(nθ)} or as a series in {einθ }. For AN

m , the choice
of complex-valued harmonic functions gives the simpler notation, keeping in mind that if the pair
a, b belongs to AN , then so does the pair a, −b, i.e., both (a · x + ib · x)m and (a · x − ib · x)m,
and therefore Re(a · x + ib · x)m and Im(a · x + ib · x)m are in AN

m

As Hm(RN) is finite-dimensional, all norms on it are equivalent; below the supremum norm
will be used:

‖p(x)‖ = sup{|p(x)| : |x| ≤ 1}.

For an harmonic function, the maximum principle implies that the supremum can be restricted to
x on the surface of the unit sphere in RN .

Lemma 2. AN
m = sp{(a · x + i b · x)m: for pairs a,b in AN with a1 + ib1 �= 0}

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Consider (a · x + ib · x)m in AN
m in the case where a1 + ib1 = 0. Define, for each 0 < δ < 1,

a(δ) in RN by

a(δ) = (δ,
√

1 − δ2a2, . . . ,
√

1 − δ2aN). (2)

As |a(δ)| = 1 = |b| and a(δ)·b = 0, the pair a(δ), b belongs to AN and therefore (a(δ)·x+ib·x)m

belongs to

L = sp{(a · x + i b · x)m : for pairs a, b in AN with a1 + ib1 �= 0},

a subspace of AN
m . As |a(δ) − a| converges to zero as δ → 0,

‖(a(δ) · x + ib · x)m − (a · x + ib · x)m‖ → 0.

Thus for a finite sum p(x) = ∑
cj (a

(j) ·x + ib(j) ·x)m in AN
m , if in each term where a

(j)

1 +b
(j)

1 = 0
the element a is modified as in (2), the resulting modified sum p̂(x) is in L and ‖p − p̂‖ can be
made less than any preassigned ε > 0 for δ chosen small enough. This shows that L is dense in
AN

m , but L being finite dimensional is closed so it must equal AN
m .

Theorem 1. For all m and N,

Hm(RN) = AN
m . (3)

Proof. The proof will be by induction on the dimension N ≥ 2, and then a further induction
on those m for which the statement (3) holds for the N under consideration.

It has been noted that (3) holds for N = 2 and all m = 0, 1, . . . . For any N , (3) is obviously
true for m = 0; for m = 1, the corresponding homogeneous polynomials of degree one are given
by xj = [(xj + ixk) + (xj + i(−1)xk)]/2 for k �= j .

To start the induction, suppose that (3) holds for some N and for that N , for all m. Consider
N+1, and as (3) holds for m = 0 and m = 1, it will be supposed that it holds for some m and it
will be shown then that (3) holds for m+1.

Let u be a function in Hm+1(R
N+1) The partial derivative of u with respect to the first variable

x1, D1u, is a harmonic polynomial homogeneous of degree m, and by the induction hypothesis
can be written as the finite sum

D1u =
∑

cj (a
(j) · x + i b(j) · x)m, (4)

cj complex constants and each pair a(j), b(j) belonging to AN+1. Applying Lemma 2, it can be
further be assumed that a

(j)

1 + ib
(j)

1 �= 0 for each j. Define

v =
∑

c′
j (a

(j) · x + i b(j) · x)m+1, (5)

with

c′
j = cj

(m + 1)(a
(j)

1 + i b
(j)

1 )
.
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Then v belongs to AN+1
m+1 and u − v belongs to Hm+1(R

N+1) with D1(u − v) zero. Write
u−v = ∑

|α|=m+1 Cαx
α , then D1(u−v) = ∑

|α|=m+1 α1Cαx
α−e1 , e1 = (1, 0, . . . , 0), showing that

u − v is an harmonic polynomial in the variables x2, x3, . . . , xN+1, having the form

u − v =
∑

Cαx
α =

∑
C(0,α2,...,αN+1)x

α2
2 . . . x

αN+1
N+1 , (6)

the sum taken over all α2 + · · · + αN+1 = m + 1. This makes it clear that u − v is an harmonic
function, homogeneous of degree m + 1, in the N - variables x2, . . . , xN+1, and as such by the
induction hypothesis can be written as a linear combination of the functions of the form

[(a2, . . . , aN+1) · (x2, . . . xN+1) + i (b2, . . . , bN+1) · (x2, . . . xN+1)]m+1,

the pair (a2, . . . , aN+1), (b2, . . . , bN+1) belonging to AN . Each of these terms can be written

[(0, a2, . . . , aN+1) · (x1, . . . , xN+1) + i (0, b2, . . . , bN+1) · (x1, x2, . . . , xN+1)]m+1,

the pairs (0, a2, . . . , aN+1), (0, b2, . . . , bN+1) belonging to AN+1. Thus the sum representing u − v

belongs to AN+1
m+1 , as does v, and therefore so does u.

III. THE DIRICHLET PROBLEM

The basic Dirichlet problem for a domain � in RN is: Given a function g defined and continuous
on the boundary ∂� of �, find a function u harmonic in � and continuous on the closure � with
u = g on the boundary.

Lemma 3. Let f be analytic on the disc D(z1, r) = {z : |z− z1| < r}. If f is not a polynomial,
there is a point z0 in this disk where f and every derivative of f is not zero:

f (n)(z0) �= 0 for n = 0, 1, . . . . (7)

Proof. See [4, ex. 2, p. 227] or [5]. Let Dn = {z : f (n)(z) = 0}. If the lemma is false,
D(z1, r) ⊂ ∪(Dn) and any closed uncountable subset F of D(z1, r) intersects at least one Dn in
an infinite set with a limit point in F; by the identity theorem f (n) is identically zero in D(z1, r)
and f is a polynomial.

With reference to the above lemma, a linear change of variable applied to any function analytic
and not a polynomial on some disk will give a function satisfying the conditions on the function
f in Theorem 2 below.

Theorem 2. Let � be a bounded open subset of RN , with the property that given any continuous
function g on its boundary, for each ε > 0, there is a harmonic polynomial p with |p(x)−g(x)| < ε

for all x in ∂�.
Let f be analytic in the disk D(0, r) which contains �, and further suppose that f (j)(0) �= 0,

for j = 0, 1, . . . . Let a continuous function g be given on ∂�. For any ε > 0, there are a finite
number of pairs of elements ak , bk in AN , λk real, |λk| ≤ 1/4 and complex coefficients ck , with

|g(x) −
∑

ckf (λk(a
k · x + ibk · x))| ≤ ε for all x in ∂�. (8)
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Proof. Consider the Banach space C(∂�) of all continuous (complex- valued) functions
defined on ∂�, taken with the supremum norm. The theorem states that the subspace M spanned
by all sums of the form given in (8) is dense in C(∂�). If this is not so, there is a function g

in C(∂�) not in the closure of M . By the Hahn-Banach theorem, there is a continuous linear
functional x∗ which is zero on M and has x∗(g) �= 0.

As x∗ annihilates the subspace M , it must annihilate f (λ(a · x + ib · x)) for all a, b in AN and
all λ, |λ| ≤ 1/4. On the closure of the the ball B(0, r/2) the power series f (z) = ∑

c′
j z

j for f
converges uniformly. By the continuity of x∗,

0 = x∗[f (λ(a · x + ib · x))] =
∑

c′
jλ

jx∗((a · x + ib · x)j ) (9)

for all λ and a, b of the prescribed type.
As none of the coefficients c′

j are zero, by regarding the series (9) as a power series in λ (clearly a
smaller set of λ than all those satisfying |λ| ≤ r/4 will suffice) it is seen that x∗((a ·x+ib·x)j ) = 0
for all j and all pairs a, b in AN . From Theorem 1, x∗(pj ) = 0 for all harmonic polynomials pj ,
homogeneous of degree j , and hence x∗(p) = 0 for all harmonic polynomials. By hypothesis,
such polynomials are dense in C(∂�) and x∗ is zero, contrary to assumption.

The Dirichlet problem is solvable for any continuous boundary function g for a domain with the
property hypothesized in the theorem. For if p(k) are harmonic polynomials with |g(x)−p(k)(x)|
converging to zero uniformly on ∂�, the sequence of polynomials {p(k)} is Cauchy in C(∂�) and
so converges uniformly on ∂� to g, and by the maximum principle uniformly on the closure of
� to a function u which is harmonic in � [2, p. 16], continuous on the closure, and equal to g

on the boundary. The maximum principle implies that two harmonic functions which are close
on the boundary of � are also close throughout �, and so u is approximated by the sum in (8)
throughout the closure of �.

If � is a bounded open set of RN , with RN − � connected, the condition above on �, that
any Dirichlet problem with continuous boundary data has a solution which can be approximated
by an harmonic polynomial, is equivalent to the condition that RN − � is not thin at each point
of ∂�, see [6, Theorem 1.15], [3, Theorem 7.9.7], [1, Theorem 1], and the proof of this is more
technically difficult than the results proved in this note. A condition that suffices for applications
is that the domain has the hypothesized property of Theorem 2 if it satisfies the Poincare exterior
cone condition: at each point ζ in the boundary of �, there is an open truncated cone C with
vertex ζ and C − {ζ } lying in RN − � [2, Chapter 11], [3, Chapter 6].

Theorem 2 gives a method for the numerical solution of the Dirichlet problem in R3 (or RN )
which is particularly simple when using a programming language with a complex data type and
built-in subroutines for some analytic functions. One chooses an analytic function f , some points
in AN , and fits a sum of the type described in the Theorem, say by least squares, to the given
function g on ∂�. See [7] for references to numerical results and a discussion of prior work.
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