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We present a new application of the complex polynomial method variant of the complex variable
boundary element method. Instead of fitting the boundary conditions using collocation points, we
minimize the error of fit in the I, norm to minimize the least-squares error. This approach greatly
enhances the utility and efficiency of the method, allowing us to apply the method to a variety of
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1. Introduction

Numerical solutions of partial differential equations (PDE)
involving the Laplace or Poisson equations are important topics
in engineering, physics, and applied mathematics. Some applica-
tions include heat transport, Fickian diffusion, groundwater
flow, contaminant flow in groundwater, stress—strain including
torsion in shafts, and electrostatics. The most popular numerical
techniques used to approximate solutions to such boundary value
problems of these PDE include real variable boundary element
methods and the domain methods of finite-difference, finite-
element methods.

The complex polynomial method (CPM) has been constrained
by computational capacity and precision of both hardware and
software. The method approximates solutions to boundary value
problems subject to a governing PDE. Using Mathematica, a
mathematical computing and programming software package
enables one to solve considerably more difficult and practical
problems (see [8]). Until now, the CPM has used only collocation
to fit to boundary conditions, which requires an equal number
of basis functions and collocation points located on the problem
boundary. By using a least-squares minimization approach to
satisfying boundary conditions, a greater level of computational
accuracy and efficiency is obtained.
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2. Background

The CPM is a numerical procedure that uses a set of complex
variable monomials with complex coefficients to form a complex
variable polynomial for use as an approximation function. The
monomial coefficients are then determined according to the
particular approach selected for satisfying the problem boundary
conditions. Because complex monomials can be resolved into two
real variable functions (the real and imaginary components), both
parts are handled as basis functions. Hromadka and Guymon first
developed the CPM variant of the complex variable boundary
element method (CVBEM) and successfully applied it to a limited set
of engineering problems [3]; however, the basis functions used in
the CVBEM made the computations involved considerably easier,
which directed further research toward the CVBEM. Details regard-
ing earlier work with the CPM can be found in [3,8]. The CPM was
recently used to solve PDE of the Laplace equation type, using
Mathematica, a mathematical computation and programming soft-
ware (see [8]). In [8], it is shown that complex polynomials in excess
of degree 35 were computationally efficient. This computational
success provided a considerable advantage over the other computer
solutions applied with the CPM such as seen in [3] and has returned
the CPM as being a strong topic for further research.

3. Theory
3.1. Mathematical development

Complex polynomials are entire functions, being analytic over
the entire complex plane; therefore, both of the real and
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imaginary parts of the complex polynomial satisfy the Cauchy-
Riemann conditions over the entire plane, resulting in both the
real and imaginary parts of the complex polynomial satisfying the
Laplace equation. Additionally, the real and imaginary parts of
the complex function form a conjugate pair which can represent
the streamline function and the associated potential function as
parts of the solution to the boundary value problem.

The CPM application developed for Mathematica [8] used
a collocation technique to determine the coefficients for the
complex polynomial approximation function. Consequently, the
coefficients were determined to match boundary condition values
specified at a set of collocation points located on the problem
boundary. Numerical accuracy was increased by adding more
collocation points on the problem boundary and, consequently,
increasing the degree of the complex polynomial.

In the current paper, the CPM is extended to using a least-
squares error minimization technique in the complex polynomial
approximation function matching the problem boundary condi-
tions continuously along the entire problem boundary. With this
new approach for the CPM, convergence of the CPM is guaranteed
as the complex polynomial degree increases (see Theorem
provided in [10]). Furthermore, the computational advantages
afforded by Mathematica (and other similar software packages)
still apply as reported in the collocation version of the CPM [8].

Convergence of either modeling approach can be assessed
by the usual theoretical bounds (for example, see [1]) provided by
the infinity-norm (with relevant assumptions made regarding
gradients of boundary condition values on the problem boundary)
for the point collocation approach, and by Bessel’s inequality for
the least-squares error minimization approach. The least-squares
error minimization approach does not require assumptions to
be made regarding boundary condition value gradients on the
problem boundary.

A convenient approach for assessing computational accuracy is
the approximate boundary approach (see [2,5]) where the locus of
points where the approximation function achieves the problem
boundary conditions is used to compare with the actual problem
boundary. Spatial departures between the approximate boundary
and the true problem boundary are reduced by adding more basis
functions (higher ordered monomials) and weighting the inner
product at locations of high departure by concentrating additional
density of evaluation points.

The inner product formulation includes integrals as shown in
Eq. (4). However, in order to evaluate these various integrals, a
numerical integration is used which results in the use of an
equivalent finite-dimensional vector space in R" with the usual
vector inner product (for example, see [1]). Generally, the
numerical integration of these inner product integrals is based
upon an evenly spaced set of evaluation points defined on the
problem boundary that are only used as locations for evaluating
the various basis functions on the problem boundary. In practice,
the definitions of these evaluation points are generally not evenly
spaced which results in a weighting of the inner product
according to evaluation point density along the problem bound-
ary. As the evaluation point density increases uniformly along the
problem boundary, the numerical integration of the various inner
product integrals becomes more accurate.

Mathematica affords the user a set of helpful procedures for
numerical calculations. Extended-precision computation allows
the use of almost any specified number of decimal places for the
calculation at the cost of time and memory. Computation is not
constrained to machine or double precision. Numerical-precision
control allows the user to explicitly set the input or output
precision of calculations, while numerical-precision tracking
internally records the accuracy of calculated results for all
computations [11].

3.2. Numerical modeling approach

Assume a simply connected domain 2 with a simple closed
contour boundary I" subject to Laplace’s equation

V() =0, (1)

where ¢(z) is the real part of a complex function w(z) = ¢
(2) + iyY(2), m boundary points z;j € I" are specified on I', and we
want to determine ¢, the best approximation of ¢.

We choose a set of n monomials {z°,z',72, .. .,z"} and construct
a set of global vectors, {F“j} to be evaluated at evaluation points
(and not collocation points) simply used for locations of function
evaluation such that
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We solve the problem in a Hilbert space using the I, norm and the
following inner product for elements u, v:

(u,v):/uvdF+/ VquZUdQ:/uvdF, 3)
r Q r

where the Laplacian operating on the elements u, v equals zero.

We orthonormalize the set of 1‘:’], vectors using the Gram-
Schmidt procedure, which yields the set of orthonormalized
vectors {éj}. We then approximate ¢ as

$(@2) =Re {Z z,-g,»], (4)
m=1

where each /; is a unique c9mp1ex constant and g; are the basis
functions which comprise {G;}.

We want to find the ¢ which minimizes the I, norm on the
problem boundary, I,

P — bl (5)
The defined error is a minimum when the coefficients, 4;, equal
the generalized Fourier coefficients. Through a back-substitution
routine, we calculate the coefficients, ¢;, corresponding to the
complex monomials to substitute into our approximate solution,

¢ =Re [2’]: cjzf} (6)
m=1

which best approximates ¢ on I' in a least-squares sense.

4. Application

As part of this research, the new variant of the CPM was
applied to a variety of engineering problems. We only present an
application to torsion in a cylindrical shaft as a demonstration.

4.1. Torsion in a cylindrical shaft

A common problem in engineering applications and design is
the analysis of stress in a shaft under rotational torsion. Some
situations which require such an analysis include helicopter rotor
shafts, ship propeller shafts, and automobile axles. The mathe-
matical description of such stress is given by the Poisson equation,
V2¢$ = —2 (for example, see [6]).

In the current application, stress in a circular cross section is
modeled using the CPM variant of the CVBEM. The CPM approach
to this problem is to determine a particular solution to the
governing PDE, ¢,, and then subtract the function ¢, from the
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Fig. 1. Approximate solutions for f(z) = —x* + 2xy + 5, torsion in a cylindrical shaft. (a) Approximate solution. (b) Relative error.

problem boundary condition values to obtain a displaced set of
boundary conditions for direct use in solving a standard two-
dimensional Laplace equation problem by the CPM. The numerical
solution is completed by adding the resulting CPM polynomial
approximation of the Laplace equation problem to the particular
solution [7]. In the application, we use a complex polynomial of
degree 12 to achieve relative error on the order of 10~'® (Fig. 1(b)).

5. Conclusions

The CPM is extended from the collocation approach presented
in [7] to a least-squares error minimization approach where the
difference between approximation and measured boundary
values is minimized continuously along the problem boundary
using a Gram-Schmidt procedure. This new version of the CPM is
developed using Mathematica although other programs such as
Maple and MATLAB are available for use. The CPM and CVBEM
have an advantage over finite-element and finite-difference
methods because they exactly solve the governing PDE over the
problem domain.

By using the Bessel’s inequality,

o0
2 2
L ];(A]) 7
which bounds the approximate solution, we can measure the rate
of convergence for the modeling routine. Increasing the number of
basis functions will improve the fit.

The extensions of the CPM to the use of other types of
boundary conditions, such as gradients tangential or normal to
the problem boundary, can be readily accommodated by use of
the relevant spatial gradients of the complex monomials. Such an
approach is examined for use of other basis function types such as
complex logarithm and products of complex logarithms with
complex polynomials in other works (for example, see [2,5]).

Complex monomials are used as basis functions here; however,
any set of linearly independent functions can be used. Future work

will use CVBEM basis functions in order to compare the results
with complex polynomial basis functions and direct further work.
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Appendix A. Mathematica program

Contact the lead author to obtain a copy of the developed
computer code.
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