The complex polynomial method with a least-squares fit to boundary conditions

A.W. Bohannon, T.V. Hromadka

Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996, USA

Article info

Article history:
Received 12 June 2008
Accepted 17 February 2009
Available online 24 April 2009

Keywords:
Complex polynomial method
Complex variables
Partial differential equations
Boundary value problems
Complex variable boundary element method
Laplace equation

Abstract

We present a new application of the complex polynomial method variant of the complex variable boundary element method. Instead of fitting the boundary conditions using collocation points, we minimize the error of fit in the l^2 norm to minimize the least-squares error. This approach greatly enhances the utility and efficiency of the method, allowing us to apply the method to a variety of engineering problems.

1. Introduction

Numerical solutions of partial differential equations (PDE) involving the Laplace or Poisson equations are important topics in engineering, physics, and applied mathematics. Some applications include heat transport, Fickian diffusion, groundwater flow, contaminant flow in groundwater, stress-strain including torsion in shafts, and electrostatics. The most popular numerical techniques used to approximate solutions to such boundary value problems of these PDE include real variable boundary element methods and the domain methods of finite-difference, finite-element methods.

The complex polynomial method (CPM) has been constrained by computational capacity and precision of both hardware and software. The method approximates solutions to boundary value problems subject to a governing PDE. Using Mathematica, a mathematical computing and programming software package enables one to solve considerably more difficult and practical problems (see [8]). Until now, the CPM has used only collocation to fit to boundary conditions, which requires an equal number of basis functions and collocation points located on the problem boundary. By using a least-squares minimization approach to satisfying boundary conditions, a greater level of computational accuracy and efficiency is obtained.

2. Background

The CPM is a numerical procedure that uses a set of complex variable monomials with complex coefficients to form a complex variable polynomial for use as an approximation function. The monomial coefficients are then determined according to the particular approach selected for satisfying the problem boundary conditions. Because complex monomials can be resolved into two real variable functions (the real and imaginary components), both parts are handled as basis functions. Hromadka and Guymon first developed the CPM variant of the complex variable boundary element method (CVBEM) and successfully applied it to a limited set of engineering problems [3]; however, the basis functions used in the CVBEM made the computations involved considerably easier, which directed further research toward the CVBEM. Details regarding earlier work with the CPM can be found in [3,8]. The CPM was recently used to solve PDE of the Laplace equation type, using Mathematica, a mathematical computation and programming software (see [8]). In [8], it is shown that complex polynomials in excess of degree 35 were computationally efficient. This computational success provided a considerable advantage over the other computer solutions applied with the CPM such as seen in [3] and has returned the CPM as being a strong topic for further research.

3. Theory

3.1. Mathematical development

Complex polynomials are entire functions, being analytic over the entire complex plane; therefore, both of the real and
imaginary parts of the complex polynomial satisfy the Cauchy–Riemann conditions over the entire plane, resulting in both the real and imaginary parts of the complex polynomial satisfying the Laplace equation. Additionally, the real and imaginary parts of the complex function form a conjugate pair which can represent the streamline function and the associated potential function as parts of the solution to the boundary value problem.

The CPM application developed for Mathematica [8] used a collocation technique to determine the coefficients for the complex polynomial approximation function. Consequently, the coefficients were determined to match boundary condition values specified at a set of collocation points located on the problem boundary. Numerical accuracy was increased by adding more collocation points on the problem boundary and, consequently, increasing the degree of the complex polynomial.

In the current paper, the CPM is extended to using a least-squares error minimization technique in the complex polynomial approximation function matching the problem boundary conditions continuously along the entire problem boundary. With this new approach for the CPM, convergence of the CPM is guaranteed as the complex polynomial degree increases (see Theorem provided in [10]). Furthermore, the computational advantages afforded by Mathematica (and other similar software packages) still apply as reported in the collocation version of the CPM [8].

Convergence of either modeling approach can be assessed by the usual theoretical bounds (for example, see [1]) provided by the infinity-norm (with relevant assumptions made regarding gradients of boundary condition values on the problem boundary) for the point collocation approach, and by Bessel’s inequality for the least-squares error minimization approach. The least-squares error minimization approach does not require assumptions to be made regarding boundary condition value gradients on the problem boundary.

A convenient approach for assessing computational accuracy is the approximate boundary approach (see [2,5]) where the locus of error minimization approach does not require assumptions to the least-squares error minimization approach. The least-squares error minimization technique in the complex polynomial approximation function is used which results in the use of an infinity-norm (with relevant assumptions made regarding numerical integration) is used. However, in order to evaluate these various integrals, a product at locations of high departure by concentrating additional functions (higher ordered monomials) and weighting the inner and the true problem boundary are reduced by adding more basis boundary conditions is used to compare with the actual problem points where the approximation function achieves the problem boundary that are only used as locations for evaluating the definitions of these evaluation points are generally not evenly distributed along the problem boundary, the numerical integration of the various inner product integrals becomes more accurate.

Mathematica affords the user a set of helpful procedures for numerical calculations. Extended-precision computation allows the use of almost any specified number of decimal places for the calculation at the cost of time and memory. Computation is not constrained to machine or double precision. Numerical-precision control allows the user to explicitly set the input or output precision of calculations, while numerical-precision tracking internally records the accuracy of calculated results for all computations [11].

3.2. Numerical modeling approach

Assume a simply connected domain \(\Omega \) with a simple closed contour boundary \(\Gamma \) subject to Laplace’s equation

\[

\nabla^2 \phi(z) = 0,

\]

where \(\phi(z) \) is the real part of a complex function \(w(z) = \phi(z) + i\psi(z) \), \(m \) boundary points \(z_i \in \Gamma \) are specified on \(\Gamma \), and we want to determine \(\psi \), the best approximation of \(\phi \).

We choose a set of \(n \) monomials \(\{z_0, z_1, z_2, \ldots, z_n\} \) and construct a set of global vectors, \(\{\tilde{F}_j\} \) to be evaluated at evaluation points (and not collocation points) simply used for locations of function evaluation such that

\[
\tilde{F}_j = \begin{bmatrix} f_j(z_0) \\ f_j(z_1) \\ \vdots \\ f_j(z_m) \end{bmatrix} = \begin{bmatrix} z_0^j \\ z_1^j \\ \vdots \\ z_m^j \end{bmatrix}. \tag{2}
\]

We solve the problem in a Hilbert space using the \(l_2 \) norm and the following inner product for elements \(u, v \):

\[
(u, v) = \int_\Gamma u v d\Gamma + \int_\Omega \nabla^2 u \nabla^2 v d\Omega = \int_\Gamma u v d\Gamma,
\]

where the Laplacian operating on the elements \(u, v \) equals zero.

We orthonormalize the set of \(\tilde{F}_j \) vectors using the Gram–Schmidt procedure, which yields the set of orthonormalized vectors \(\{G_j\} \). We then approximate \(\phi \) as

\[
\hat{\phi}(z) = Re \left[\sum_{m=1}^{n} \lambda_j G_j \right], \tag{4}
\]

where each \(\lambda_j \) is a unique complex constant and \(G_j \) are the basis functions which comprise \(\{G_j\} \).

We want to find the \(\hat{\phi} \) which minimizes the \(l_2 \) norm on the problem boundary, \(\Gamma \),

\[
\|\hat{\phi} - \phi\|_{l_2}. \tag{5}
\]

The defined error is a minimum when the coefficients, \(\lambda_j \), equal the generalized Fourier coefficients. Through a back-substitution routine, we calculate the coefficients, \(c_j \), corresponding to the complex monomials to substitute into our approximate solution,

\[
\hat{\phi} = Re \left[\sum_{m=1}^{n} c_j \tilde{F}_j \right], \tag{6}
\]

which best approximates \(\phi \) on \(\Gamma \) in a least-squares sense.

4. Application

As part of this research, the new variant of the CPM was applied to a variety of engineering problems. We only present an application to torsion in a cylindrical shaft as a demonstration.

4.1. Torsion in a cylindrical shaft

A common problem in engineering applications and design is the analysis of stress in a shaft under rotational torsion. Some situations which require such an analysis include helicopter rotor shafts, ship propeller shafts, and automobile axles. The mathematical description of such stress is given by the Poisson equation,

\[
\nabla^2 \phi = -2 \text{ (for example, see [6])}
\]

In the current application, stress in a circular cross section is modeled using the CPM variant of the CVBEM. The CPM approach to this problem is to determine a particular solution to the governing PDE, \(\phi_P \), and then subtract the function \(\phi_P \) from the
problem boundary condition values to obtain a displaced set of boundary conditions for direct use in solving a standard two-
dimensional Laplace equation problem by the CPM. The numerical
solution is completed by adding the resulting CPM polynomial
approximation of the Laplace equation problem to the particular
solution [7]. In the application, we use a complex polynomial of
degree 12 to achieve relative error on the order of 10^{-16} (Fig. 1(b)).

5. Conclusions

The CPM is extended from the collocation approach presented
in [7] to a least-squares error minimization approach where the
difference between approximation and measured boundary
values is minimized continuously along the problem boundary
using a Gram–Schmidt procedure. This new version of the CPM is
developed using Mathematica although other programs such as
Maple and MATLAB are available for use. The CPM and CVBEM
have an advantage over finite-element and finite-difference
methods because they exactly solve the governing PDE over the
problem domain.

By using the Bessel's inequality,

$$\int_{\Omega,f} \phi^2 \geq \sum_{j=1}^{N} \lambda_j \phi_j^2$$

which bounds the approximate solution, we can measure the rate
of convergence for the modeling routine. Increasing the number of
basis functions will improve the fit.

The extensions of the CPM to the use of other types of
boundary conditions, such as gradients tangential or normal to
the problem boundary, can be readily accommodated by use of the
relevant spatial gradients of the complex monomials. Such an
approach is examined for use of other basis function types such as
complex logarithm and products of complex logarithms with
complex polynomials in other works (for example, see [2,5]).

Complex monomials are used as basis functions here; however,
any set of linearly independent functions can be used. Future work
will use CVBEM basis functions in order to compare the results
with complex polynomial basis functions and direct further work.

Acknowledgment

The authors would like to thank LTC Michael Jaye of the
Department of Mathematics at the United States Military
Academy at West Point for his support and guidance.

Appendix A. Mathematica program

Contact the lead author to obtain a copy of the developed
computer code.

References

[4] Hromadka TV, Lai C. The complex variable boundary element method in
[5] Hromadka TV, Pardoen GC. Application of the CVBEM to non-uniform St.
[6] Hromadka TV, Whitley RJ. Advances in the complex variable boundary element
model problems involving the Laplace and Poisson equations. The Journal of
um.20365.
[8] Whitley RJ, Hromadka TV. Approximating harmonic functions on \mathbb{R}^n with one
function of a single complex variable. The Journal of Numerical Methods for
2008 (http://www.wolfram.com/technology/guide/).