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In both the real variable and Complex Variable Boundary Element Methods (CVBEM), nodal points are
typically located on the problem boundary and then various techniques are used to fit boundary condi-
tion values at the nodal point locations such as collocation (equating approximation function to boundary
condition values at a discrete set of locations on the boundary) or least squares minimization on the
boundary, among others. In this paper, the CVBEM is used to examine the significant improvement in
approximation accuracy achieved by using as additional approximation variables the actual nodal point
locations (both on the problem boundary as well as exterior of the problem domain union boundary), and
to also use as additional approximation variables the locations where boundary conditions are fitted (i.e.
collocation points). The developed concepts also apply directly to the more commonly used real variable
boundary element technique. Our results show that significant improvement in modeling accuracy is
achieved by including the nodal point coordinates and also the collocation point coordinates as additional
variables to be optimized.
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1. Introduction

The real variable Boundary Element Method (BEM) and also the
Complex Variable Boundary Element Method (CVBEM) are well
documented and described in the literature (for example, for the
CVBEM see Hromadka and Whitley [1] and Hromadka [2], and
for the BEM see Brebbia [3]), and so the reader is referred to those
publications, among others, for detailed background informa-
tion into these numerical methods.

In the current work, the CVBEM is focused upon assessing the
advantages achieved by using a new approach towards improving
approximation accuracy. This new approach, described for the
CVBEM, would also apply to the well-known real variable BEM.
Therefore, discussions regarding the CVBEM applications would
similarly apply to the case of the BEM.

The new approach being presented is an extension of Dean and
Hromadka [4]. In Dean and Hromadka [4], nodal point locations
used in the CVBEM approximation function are included as vari-
ables to be optimized in minimizing approximation error in match-
ing problem boundary conditions at collocation points that are
located on the problem boundary. In other words, the general ap-
proach in boundary element methods is to fix nodal point locations
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on the problem boundary and then to estimate coefficients (which
may be the nodal point values themselves) such that boundary
conditions are better fitted by the resulting approximation func-
tion. Common to the BEM and CVBEM is the specification of these
nodes to lie on the problem boundary. However, in Dean and Hro-
madka [4], the CVBEM node locations themselves are included as
additional variables to optimize in the approximation effort in bet-
ter fitting the problem boundary conditions. That is, node locations
are considered variable on the problem boundary and also exterior
of the problem domain union boundary.

The CVBEM is a two-dimensional and three-dimensional (and
higher dimension, see Hromadka [2]) approximation technique
that utilizes basis functions that exactly solve the governing partial
differential equations (PDE)of the Laplace and Poisson type,
among other equations. Therefore, a linear combination of such
CVBEM basis functions also exactly solves such PDE, which is a
property afforded by the CVBEM that is not achieved by the usual
domain numerical techniques such as finite difference and finite
element methods. The various coefficients used in the linear com-
bination of CVBEM basis functions are typically determined by fit-
ting boundary condition values under specific error reduction
strategies such as collocation or least squares error minimization.
The usual CVBEM basis functions involves products of complex
variable polynomials with complex logarithms, which in turn de-
pend on the defined location of the modeling nodal points. In Dean
and Hromadka [4], nodal point locations were included as variables
to be optimized.

In the current work, the above concept is extended by not only
including the nodal point locations as variables to be optimized,
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but also by including the locations where boundary conditions are
fitted (i.e. the collocation point locations) as additional variables to
be optimized. It will be shown that by optimizing the boundary
condition fit locations, in addition to optimizing nodal point loca-
tions, further improvement in modeling accuracy is achieved over
the approach of locating nodes and collocation points arbitrarily
(such as evenly space locations, for example) on the problem
boundary.

As a result, significant modeling accuracy improvement is
achieved with fewer nodal points and corresponding reduction in
computational demand in solving problems. The CVBEM optimiza-
tion algorithms were developed for use on program Mathematica,
the source code of which is included as an Appendix.

2. Optimizing the CVBEM nodal point and collocation point
locations

2.1. Nodal point location optimization

In this work, nodal point locations are included as variables to
increase the accuracy of the CVBEM. The algorithm input required
includes the number of nodes, the collocation point locations, and
the problem boundary conditions.uses Collocation is used as the
strategy for fitting boundary conditions.

Using the given collocation points and boundary conditions, a
CVBEM approximation function is developed. The problem bound-
ary conditions are then compared to the CVBEM approximation
functions (as evaluated on the problem boundary) and used to im-
prove the accuracy by varying node point locations, including mov-
ing nodes to be located exterior of the problem domain and
boundary.

2.2. Collocation point location optimization and algorithm

In the current work, the boundary condition fitting error reduc-
tion scheme used is to equate the CVBEM approximation function
to specified boundary condition values. The optimization tech-
niques described below can extend to other boundary condition
fitting schemes such as least squares error minimization, among
others.

The current work’s algorithm requires a set of initial collocation
point locations, boundary conditions, the nodal point locations (or
an additional node-optimization module can be used), and the spa-
tial increment desired between successive tests for collocation
point location movement. The final result is an optimized set of
collocation point locations and their error measure. The current pa-
per only focuses on the optimization of collocation point locations,
although nodal point location optimization is contained in the
Mathematica code of Appendix A.

Several different methods of calculating modeling error in
matching boundary conditions were considered. Using numerical
integration proved to be most efficient. First, an error function is
created by taking the absolute value of the difference between
boundary conditions and the approximation function evaluated
on the problem boundary. This error function is then integrated
along the entire problem boundary.

The bulk of the collocation point location optimization work in
Appendix A is accomplished within two iterative loops: the outer
loop cycles through each collocation point location, while the inner
loop moves a point along the problem boundary in steps of the de-
sired spatial increment. The movement loop sets the first colloca-
tion point location, and uses the other collocation points to
generate an approximation function, then determines the error
associated with using that particular point. Then the inner loop
moves the first collocation point an increment (specified by the

user) along the boundary and rebuilds an approximation function,
determines the error, and compares it to the previous error, storing
the better approximation function’s collocation point location.

The above process repeats for every collocation point along the
boundary until the target variable collocation point returns to its
starting location, and the collocation point location that yielded
the lowest measure of error is determined. The program outer loop
then steps to the next collocation point, and repeats the above pro-
cess for the second point, saving the collocation point location that
generated the best approximation function, and so on. When each
collocation point’s “best” location is determined, the final distribu-
tion of collocation points is used to generate the CVBEM approxi-
mation function, and the Mathematica program (see Appendix A)
outputs the collocation point locations and the associated error
measure generated by that approximation function. (In this work,
it is assumed that nodal point placement may occur at the rate
of one node at a time, with optimization occurring accordingly.
Further research is needed to assess optimization characteristics
related to different schemes of placing nodal points.)

Because the CVBEM exactly solves the governing PDE within the
problem domain, the modeling error is only in the matching of
boundary conditions. Because the PDE considered is the Laplace
or Poisson equation the maximum magnitude of modeling error
occurs on the problem boundary. Therefore the modeling goal be-
comes developing an approximation function that matches bound-
ary conditions.

3. Mathematica computer code

Computer program Mathematica (published by Wolfram Re-
search) is the program that was used for the work described above.
Its advantages include good quality graphics and high accuracy for
complex calculations, such as complex variable mathematics. It
also has several built-in functions that can make programming
simpler, and some of these features were used in this work.

The main aspects of Mathematica used for this work are new
function definitions, numerical integration, standard computer lo-
gic (for loops), and complex variable (not just real variable) calcu-
lations. See Appendix A for the Mathematica code.

In order to build the CVBEM approximation functions, some of
the Mathematica code from Dean and Hromadka [4] is used. The
current program is divided into four sections: an input and decla-
ration section, an optional node location optimization section, a
section that optimizes collocation point locations, and a plotting
section that generates the relevant graphics. The inputs are found
in the first section, and consist of the problem boundary condi-
tions, initial node and collocation point locations, and the colloca-
tion point spatial increment movement desired (for collocation
point movement or node location optimization trials).

4. Example problem

Consider a two-dimensional problem domain located in the first
quadrant and bounded by a circle (used solely for the ease of
graphical generation) of radius 1, centered at coordinate (2,2),
and the complex function of w(z) = z? +Zl—2. The function w(z) is
the complex variable mathematical model describing ideal fluid
flow (or other potential flow) around a unit radius cylinder in a
right angle bend. (It is noted that a circular domain is selected only
for convenience; irregularly-shaped domains are similarly
analyzed.)

A plot of the considered ideal fluid flow problem potentials and
corresponding orthogonal streamlines is shown in Fig. 1. Because
the analytic solution for the presented example problem is known
a priori, its complete flownet can be plotted for comparison
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Fig. 1. Flownet corresponding to ideal fluid flow over a cylinder in right angle flow.

purposes with respect to the CVBEM approximation functions (The
selected problem of ideal fluid flow is used to demonstrate the dis-
cussed procedures, while taking advantage of modeling a problem
where the exact solution is known for comparison purposes.). In
application, one works only with the boundary condition values
known as continuous values on the problem boundary. Fig. 2 is
again the flownet of the known analytic solution to the problem,
but includes the problem domain and boundary used in the CVBEM
analysis along with the initial set of CVBEM approximation func-
tion node and collocation point locations. In Fig. 2, the problem
boundary is shown as dotted black lines, the nodal point location
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Fig. 2. Test problem domain situated in ideal fluid flow regime of Fig. 1 - diagram
includes initial node and collocation point locations.

is shown as an “X”, and collocation points are shown as small cir-
cles. (The model problem boundary is the circular region shown in
Fig. 2. Boundary conditions are therefore the values from the real
part of the complex function solution stated above. Boundary con-
dition values are specified at the model collocation points also
shown in Fig. 2.)

Although the provided computer program (in Mathematica, see
Appendix A) includes algorithms to optimize the locations of the
CVBEM nodal points (which are restricted to lie outside of the inte-
rior of the problem domain) and also the locations of the colloca-
tion points (which must be located on the problem boundary),
the provided algorithms must be initialized with user-defined
locations for both the nodes and collocation points. Once these var-
ious locations are initialized, the algorithms vary the node loca-
tions and the collocation point locations so as to reduce the error
measure in matching boundary condition values (which is the
numerical integration of the absolute value of the difference be-
tween CVBEM approximation function values on the problem
boundary and the given boundary conditions). The algorithms vary
the several locations one point at a time (i.e., the nodes, and once
optimized, the collocation points). For example, when optimizing
a particular target node location, once the error measure is opti-
mized, the target point nodal location is held fixed and then the
next nodal point is examined for its optimal location. When all
node locations are optimized, the collocation point locations are
optimized similarly.

In order to demonstrate the significance in optimizing node and
collocation point locations as part of the approximation effort, a
second CVBEM model (or “baseline” model) is built for comparison
purposes, modeling the same ideal fluid flow problem presented
previously. The baseline CVBEM model has a single CVBEM node
and the associated five collocation points. The baseline model uses
evenly spaced collocation points as shown in Fig. 2. All these vari-
ous points are located on the problem boundary as is the case for
both the CVBEM as well as the real variable BEM such a placement
of nodes and collocation points on the problem boundary is typical
of how one applies a CVBEM or real variable BEM modeling tech-
nique. Using the error measure discussed, the resulting error

0 4

Fig. 3. Flownet from baseline CVBEM model of Fig. 2 (note branchcut emanating
from nodal point).
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measure for this particular baseline model is 8.30457. A plot of
potentials and streamlines from this baseline model is shown in
Fig. 3. Other baseline model setups are possible and other corre-
sponding error measures would result. (It is noted that in Fig. 3,
the resulting CVBEM approximation function (developed over the
circular problem domain shown in Fig. 2) is defined throughout
the interior and also the exterior of the circular problem domain.
Therefore, the cylinder region located near the origin as shown in
Fig. 1 does not apply in Fig. 3.)

For the new algorithm approach, it is recalled that the algorithm
starts with optimization of the nodal point locations, and then pro-
ceeds to optimizing the corresponding collocation points.

In this example problem, using only one nodal point, the opti-
mized location for the single node CVBEM model is shown in
Fig. 4. A closer view of the resulting flownet produced from the
optimized model in the vicinity of the problem domain is seen in
Fig. 5. Somewhat surprisingly, the optimized location of the single
CVBEM node is found to be positioned to the far upper right of the
problem domain, some four diameters distant from the problem
domain itself. The relevant optimized locations for collocation
points are also seen in Fig. 5 and are concentrated along the north-
erly hemisphere of the problem boundary. The corresponding error
measure for this particular single node CVBEM model is .07246.
The CVBEM modeling improvement in using the optimized single
node CVBEM model in comparison to the baseline model is a ratio
of error measures of 8.30457/.07246 or approximately 114.6. It is
noted that the above improvement in modeling accuracy is accom-
plished in using a single node CVBEM model (with associated five
collocation points) with optimized node and collocation point loca-
tions versus a typically set up CVBEM model with one node and
five approximately evenly spaced collocation points. It is also
noted that by comparing the flownets of Fig. 5 (optimized single
node model) to Fig. 2 (analytic solution), it is seen that a close
approximation of the analytic solution is achieved on the problem
domain by the presented optimization procedure.

The provided algorithm functions similarly with multiple nodes
and the corresponding collocation points. Holding all other nodal
point locations fixed, the program moves a single node until the
optimized approximation function’s error is minimized, locks that
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Fig. 4. Optimized node location for single-node CVBEM model of test problem.
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Fig. 5. Flownet from CVBEM single-node model (with optimized node location)
within problem domain of Fig. 2.

35
30

Error Value Along Problem Domain

0 1 2 3 4 5 6
Distance Along Boundary

Fig. 6. CVBEM model error in matching boundary conditions for situation of Fig. 3.
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Fig. 7. CVBEM model error in matching boundary conditions for situation of Fig. 5.

node in place, and then optimizes the next node. The program fol-
lows a similar pattern for the collocation points. In this particular
problem, the two-node CVBEM model error measure is .04559.
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Figs. 6 and 7 are plots of the error measure along the problem
boundary. The Maximum Modulus Theorem (see applications in
Hromadka and Whitley [1]) provides that the maximum value of
the error interior of the problem domain occurs on the problem
boundary. Fig. 6 corresponds to modeling error in matching bound-
ary conditions for the case of Fig. 3; Fig. 7 corresponds to the case
of Fig. 5.

5. Discussion of results

Although the example problems presented are straightforward
to consider, their use aids in fully disclosing the advantages affor-
ded by extending boundary element method mods (both CVBEM
and BEM) to include both the nodal point locations and collocation
point locations as additional variables to be optimized. The model-
ing goal would include locating nodes (both on and off the bound-
ary) and collocation points (on the boundary) such as to reduce
modeling error in matching boundary conditions. It was found that
even the straightforward problems, optimizing these node and col-
location point locations provides considerable improvement in
modeling accuracy.

6. Conclusions

In this paper, an algorithm is presented that optimizes both the
nodal point locations and also the collocation point locations used
in a Complex Variable Boundary Element Method (CVBEM) model.
The algorithm examines various locations for nodal points that are
positioned not only on the problem boundary but also exterior of
the problem domain union boundary. Starting with an initial set
of five collocation point locations on the problem boundary, corre-
sponding to a single node CVBEM model, the first considered
CVBEM nodal point is used in a single node CVBEM model (which
requires five collocation point for a collocation type fit to problem
boundary conditions, where for a Dirichlet problem, it is assumed
that the conjugate stream function has value at another collocation
point), and various test locations are considered for the placement
of the first node. For each test location, the error in matching
boundary conditions is computed on the total problem boundary.
The location for the first node, that results in the least error in
matching problem boundary conditions, is then fixed as the opti-

mized location for the first node. The algorithm proceeds to then
considering adjustment of the five collocation point locations in
order to further improve CVBEM approximation results. Once opti-
mized, the algorithm holds the optimized locations for the first
node and associated five collocation points as fixed. Next, the algo-
rithm introduces the second node and an additional two colloca-
tion points. With the first node held as fixed and the first five
collocation locations held fixed, the algorithm searches for the
optimized locations for the second node and also the next two
associated collocation points. Once optimized locations are deter-
mined, the CVBEM model has two node locations and seven collo-
cation points locations determined. These various locations are
now held fixed for the introduction of the third node and an addi-
tional two collocation points. The algorithm continues stepwise in
this fashion. Computational results show significant improvement
in modeling accuracy by optimizing both the nodal point and
collocation point locations, where nodes are allowed to be posi-
tioned on the problem boundary or outside and away from the
problem boundary (collocation points are necessarily positioned
on the problem boundary). For the current paper, the described
algorithm is implemented on computer program Mathematica.
Source code for the subject program is provided.
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Appendix A: Mathematica Optimization Code

(*Below are the inputs required of the user, with some defaults already in*)

(* Section 1 *)
— 112 _ 2 u _ u? . E " L] :
®fu,v ] =u*—-v*+ v e (* This is the "solution" function *)
¢ = {{1,2}}; (* Initial Node Location(s) *)
A= {{3,2}, 2 + Cos[£2],2 + Sin[Z2]}, (2 + Cos[22 13, {2 + Cos[&2
Sin [(6 1T)]} {2+ Cos[(8 1T)] 2+ Si [(8 1T)]} (* Initial collocatlon pomt distribution *)

a= 5, (* Increment for each change in node location point, in radians *)

2

(4 ™) (4 ™) (6 ﬂ)

1,2 + Sin[~— 1,2 +

B = 21—:;(* Collocation point configuration rotation increment, in radians *)

RDist = {1,1.1,1.2,1.3,1.5,2,3,4,5,10} ;(* Set of radii that will be attempted for nodal point
optirnization *)

6= E ;(* Increment for each change in collocation points, in radians *)

(* From this point on, no input or additional effort is required of the user. Below is the
generation of the collocation point values (I') and other assorted declarations *)

n = Length[(];

AB = ConstantArray[0, n];

Do[A8][i]] = —(m + ArcTan[g[[il][[1]] — 2, ¢[[][[1]] - 2]), i, n}];

I' = {}iFori = 1,i < Length[A],i + +,T = Join[T, {®[A[[il][[11], A[[il] [[21]}]1:
OffNIntegrate::slwcon];Off] Unset::norep];Off N::meprec]; Off[ NIntegrate::ncvb];

(* Node Testing *)

RNum = %T — 1; N2Coord = e™; N2Error = e™n®;

(* Collocation Point Testing *)

MovC = 2?“; M2Error = e™rt¢;

(* Below should not have to be altered by the user. *)
(* Section 2 *)

For[NCount = 1, NCount < n, NCount + +,
Print["NODE ", NCount];
For[rad = 1,rad < Length[RDist],rad + +,
Print["Testing a radius of ", RDist[[rad]],"..."];
For[ang = 0,ang < RNum, ang + +,
Z[[NCount]] = {2 + RDis[[rad]] Coslang a],2 + RDist[[rad]] Sin[ang a]}//N;
n = Length[{];
AB[[NCount]| = —(m + ArcTan|[[[NCount]|[[1]] — 2,¢[[NCount]][2] — 2])//N;
test = 0; For[i = 1,i < Length[A],i + +, If[¢[[NCount]| == A[[i]], test = 1]];
For[j = 1,j < (Length[(] — 1),j + +, If[([ [NCount]| == [ d[NCount — 1 +

j, Length[{]] + 1]] ,test = 1] I:
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If[t ==0,by, = 0;
X_, ] = ComplexExpand[Re[(ag +iby) + (a; +ib)(x+iy) + Z}Ll(ajﬂ +

1b]+ ) ( (( s [ae[[j1]] - y sin [a6[[j1]]) + i (y Cos[6[[j]]| + x Sin [AG[[j]]])) -
(s[uT)ra1]cos [ae[m] — g[uT][121] sin [ao[G]] +

i (g[h][121]cos [ae[f1]| + ¢[hI[[11]sin [a6[[j] ])) Log [((x Cos[a6[[j]]| -

y Sin [Ae[[j]]]) +i (y Cos [ae[[j]]] +xsin [a6[[j1]]) + i (¢[l][[2]]cos [a6[[l]| +
Z[G1][111]sin [Ae[m]]))m

W[x_y_] = ComplexExpand[Im[(ao + ibg) + (a; +ib)(x +iy) + XL (ajs1 +
iby1) (((x Cos [a6[[j1]] - y sin [a6[[j1]]) + 1 (v Cos|a6[[j]]| + x Sin [Ae[[j]]])) -
(Lot} cos [ae[m]] - g[u1]{121] sin [ao[G]] +
i (g[n1][[21]cos [a6[[1]] + ¢[G1][[1]]sin [a6] ]]]])) Log [((x Cos[ae[[l]] -

y Sin [A6] [j]]]) +i (y Cos [ae[[j]]] +xsin [a8[[j1]]) + i (¢[il][[21]cos [a6[[j]| +

¢[nl][i11]sin [Ae[m]]))m

A = Table[o[A[[i]][[1]], A[[i]][[2]], 6, 1,2 n + 3}]//N;
{k, m} = CoefficientArrays|[A, Join [Table[a]-, {j,0,n + 1,1}], Table[b]-{j, 1,n+ 1,1}]]];
w = LinearSolve[m, T']; Do[aj_jL = oo[[j]],{j,n + 2}]; Do[bj = u)[[j +n+ 2]],{j,n + 1}];
ErrFun[x_y_] == Abs[@[x,y] — ®[x,y]];
Error = NIntegrate[ErrFun[Z + Cos[t], 2 + Sin[t]], {t, 0,2 1}, WorkingPrecision — 10.];
If[Error < N2Error, N2Error = Error; N2Coord = {[[NCount]]];
Do[aj_; =.,{j,n + 2]; Do[bj_; =.,{j,n + 2}]
Print Z[ [NCount] ] is not a valid node location; it will be skipped. "]] (* IF *)
1(* angle *)
|(* radius *)
¢[[NCount]] = N2Coord//N;
AB[[NCount]| = — (1t + ArcTan[¢[[NCount]|[[1]] — 2, ¢[[NCount]]|[[1]] — 2])//N;
f[NCount == n, If[n == 1, Print["Final node location is ", ¢, ", with an error rating of ",
N2Error], Print["Final node locations are ",{,", with an error rating of ", N2Error]],

Print["New node location is ", {[[NCount]],", with an error rating of ", N2Error]];] (*
node *)

(* Section 3 *)
Print["Beginning collocation point movement ..." |;
For[pointNo = 1,pointNo < Length[A], pointNo + +,
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Print["Point ", pointNo," ...out of ", Length[1]];
For[rot = 0,rot < (MovC — 1),rot + +,
/'l[[pointNo]] = {2 + Cos[rot §],2 + Sin[rot 6]}/ /N;

F[[pointNo]] = [/'l[[pointNo]][[1]],1[[pointNo]][[2]]] //N;
test = 0;
For[j =1,j < (Length[1] — 1),j + +,If [A[[pointNo]] == 1 [[Mod[pointNo -1+

j,Length[A]] + 1]], test = 1”;
For [i =1,i < Length[{],i + +, If[A[[pointNo]] == ([[i]], test = 1]];

If[test == 0,by = 0;

9l y_] = ComplexExpand[Re[(aq + i bo) + (ay + i by)(x + () + Xy (a1 +
i bjy1) (((x Cos [AH[[]']]] —y Sin [AB[[j]]]) +i (y Cos [AH[[j]]] + x Sin [AH[[]']]D) —
(z[[j]][[u]cOs |a6[11]] - <[U1[121] sin [a6[01]] + ¢ (<[E1[121]Cos [a6[11]] +
Z[[1]sin [AH[[]’]]D) Log [((x Cos[6[[j1]| - y Sin [AH[[]’]]D +1 (y Cos [a0[[j1]] +

x sin[a6[(1]]) + ¢ (¢[U1[121]cos [a6[01]] + ¢[L][[11]Sin [Ae[m]]))m;

Y[x_y_] = ComplexExpand[Im[(ay +iby) + (a; +iby)(x +iy) + Z?zl(ajﬁ +
i bjy1) (((x Cos [AH[[]']]] —y Sin [AB[[j]]D +i (y Cos [AH[[j]]] + x Sin [AH[[]']]D) -
(z[[j]][[u]cOs |a6[11]] - <[U1[121] sin [a6[071]] + ¢ (¢[L1[121]Cos [a6[11]] +
¢[u]sin [AH[[]’]]D) Log [((x Cos[46[[j1]| - ¥ Sin [Ae[[j]]]) +1 (y Cos [a0[[1]] +

x sinfa0[[1]]) + i (¢[i1[121]cos [a0[11]] + ¢[0][[1]sin [Ae[[j]]]))m;

A = Table[o[A[[i]][[1]], A[[i1][[2]], {i, 1,2 n + 3}]//N;
{k, m} = CoefficientArrays[A, Join [Table[a]-, {j,0,n+ 1,1}], Table[b]-{j, 1,n+ 1,1}]]];

w = LinearSolve[m, T]; Do[a]-_l = u)[[j]],{j,n + 2}]; Do[bj = w[[j +n+ 2]],{j,n + 1}];
ErrFun[x_y_] := Abs[@[x,y] — ®[x,y]];
Error = NIntegrate[ErrFun[Z + Cos[t],2 + Sin[t]], {t, 0,2 7}, WorkingPrecision — 10. ];
If[Error < M2Error, M2Error = Error; MCoord = A];
Do[aj_; =.,{j,n + 2]; Do[bj_y =.,{j,n + 2}]] (* If %)
I; (* Angle *)
A = MCoord;
Do[r[[i]] = @[A[LiI][[11], A[lil][[21], G Length[A]}]
]; (* Point 1,2,3,... *)
Print["Optimal collocation point movement yields the points ", A, ", with a final error
of ",M2Error,"."];



