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The Complex Variable Boundary Element Method or CVBEM is a numerical technique for approximating
particular partial differential equations such as the Laplace or Poisson equations (which frequently
occur in physics and engineering problems, among many other fields of study). The advantage in using
the CVBEM over traditional domain methods such as finite difference or finite element based methods
includes the properties that the resulting CVBEM approximation is a function: (i) defined throughout
the entire plane, (ii) that is analytic throughout the problem domain and almost everywhere on the
problem boundary and exterior of the problem domain union boundary; (iii) is composed of conjugate
two-dimensional real variable functions that are both solutions to the Laplace equation and are
orthogonal such as to provide the “flow net” of potential and stream functions, among many other
features. In this paper, a procedure is advanced that locates CVBEM nodal point locations on and
exterior of the problem boundary such that error in matching problem boundary conditions is reduced.
That is, locating the nodal points is part of modeling optimization process, where nodes are not
restricted to be located on the problem boundary (as is the typical case) but instead locations are
optimized throughout the exterior of the problem domain as part of the modeling procedure. The
presented procedure results in nodal locations that achieve considerable error reduction over the usual
methods of placing nodes on the problem boundary such as at equally spaced locations or other such
procedures. Because of the significant error reduction observed, the number of nodes needed in the
model is significantly reduced. It is noted that similar results occur with the real variable boundary
element method (or BEM).

The CVBEM and relevant nodal location optimization algorithm is programmed to run on program
Mathematica, which provides extensive internal modeling and output graphing capabilities, and
considerable levels of computational accuracy. The Mathematica source code is provided.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

arbitrarily shaped domains. Research into the underpinnings of
the CVBEM continues along several lines of development.

The Complex Variable Boundary Element Method or CVBEM is
a well documented numerical procedure that numerically solves
boundary value problems involving the Laplace or Poisson equa-
tions in two-dimensional space (for example, see Hromadka and
Lai [1], and Hromadka [2]). The CVBEM was subsequently
extended to three dimensional and higher spatial dimensions by
use of spatial projections and Hilbert space considerations [3].
More recently, a special issue of the journal Engineering Analysis
with Boundary Elements highlighted new advances made with
the CVBEM [4]. The CVBEM has been applied to a spectrum of
problems spanning torsion in structural mechanics, to soil water
phase change effects in porous media, to the analysis of heat and
groundwater movement in two and three dimensions on
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In the current paper, the focus is on methods of adding nodal
points in the CVBEM modeling effort such that the number of
nodal points is kept small while retaining or improving modeling
accuracy. Hromadka [2] describes an algorithmic procedure for
adding nodes on the problem boundary such as to rapidly reduce
modeling error in matching boundary conditions. However, in
that referenced work, nodes are only added to the problem
boundary to improve CVBEM accuracy (it is noted that the class
of problems under study are potential problems and therefore the
modeling magnitude of error will be a maximum on the problem
boundary and, therefore, focusing on matching boundary condi-
tions provides error containment within the problem domain
enclosed by the problem boundary). The current paper develops
an algorithm to optimize the location of CVBEM nodes not only on
the problem boundary but also on the exterior of the problem
domain union boundary. The algorithm initiates with the first
node used in the CVBEM model, and then reduces approximation
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error by selecting the nodal location that results in a CVBEM
approximation function that best fits problem boundary condi-
tions. That is, the algorithm locates the nodal position, which
results in the least modeling error in fitting problem boundary
conditions. Holding the selected first node location fixed, the
second node location is then determined that minimizes error in
the 2-node CVBEM model. Then, holding the first two nodal
locations fixed, the third node location is determined, and
so forth.

The algorithm is implemented on the computer program
Mathematica, which provides considerable advantages in coding
effort reduction by use of the program’s internal mathematical
functions. The Mathematica output features and graphing cap-
abilities also provide considerable advantages over compiled
software languages such as FORTRAN, among others. Mathema-
tica also provides a significant level of computational accuracy
enhancement. The Mathematica code for this paper is provided in
Supplementary Material. Example problem results are also pro-
vided to demonstrate the nodal placement algorithm.

It is noted that the developed algorithm may also be applied to
real variable boundary element analogs such as those developed
by Brebbia [5] among others.

2. Nodal placement optimization algorithm

Consider a two-dimensional problem domain that is simply
connected and enclosed by a simple closed boundary, with the
domain centroid located at the origin in R? (extension to three or
higher dimensions follows directly as those extensions are a
linear combination of two-dimensional CVBEM approximation
functions [3]). The nodal placement optimization algorithm used
in this paper is a modified version of the Mathematica code
developed by Dean and Hromadka [4], and is described as follows.

Step 1 consists of finding an optimal nodal point on! the
domain boundary. This is accomplished by subdividing the
domain in angular fashion. Let 6;,i=1,2, ...,n, be the angular
measurement of each subdivision i, where 0,=27 and
0:1=A0=0;,,—0,Vi, thus creating equally spaced subdivisions.
Associated with each 0; is a point (r;,0;) lying on footnote 1 the
domain boundary. For i=1, 2, ...,n, a CVBEM model approxima-
tion is determined for each candidate nodal point (r;,0;) and the
corresponding total error (or “integrated error”) between the
CVBEM model and the boundary conditions is computed. In
determining the CVBEM model approximation, the logarithmic
branch cut is defined to emanate from the candidate node along
the ith radial at an angle of 6; from the horizontal. The candidate
nodal point with the lowest total error is identified and labeled
(7,0). This completes the first iteration of Step 1.

The second iteration of Step 1 refines the result obtained in the
first. To do so, we consider only three of the original candidate
nodes: (f,@), and its two adjacent candidate nodes located at
0+ A0 and H—A0, thus narrowing our search for an optimal node
to two intervals of consideration: | §—A6, 0] and [, 0 +A6].
Two additional candidate nodes are constructed by halving these
two intervals, creating two new candidate nodes located at
@f(AH/Z) and @+(A0/2). Total error is calculated for these two
nodes (again, with appropriate logarithmic branch cut), and
compared to the error for the three remaining original node
candidates. The point with the lowest total error is selected and
renamed (7,0).

Subsequent iterations of Step 1 are completed in like fash-
ion, narrowing the search region down to two intervals:

1 Actually, a point ¢ distance beyond the boundary, for some small &.

[0—(A0/27%), 0] and [0, 0 +(AO/2?)] for iteration j, halving
these intervals to create two new candidate nodal points, computing
the total error, comparing these with the total error at the endpoints
of the two intervals, and selecting the point with the lowest total
error. This process is ended when the error improvement between
subsequent iterations falls below some threshold, and the resultant
optimal boundary nodal point is labeled (,60%). This completes
Step 1.

Step 2 consists of improving upon the result obtained in Step 1 by
searching along a radial emanating from the domain centroid at an
angle 6* outside the domain boundary. This is accomplished by
choosing an appropriate distance Ar, and m, the number of radial
subdivisions. Total error is then calculated for each of the m+1
candidate nodal points (7+kAr, 6*), k=0,1,2,...,m* and the
point with the lowest total error is recorded and labeled (7+,0%).2
This completes the first iteration of Step 2. Subsequent iterations
proceed in much the same manner as in Step 1. For each iteration j,
eliminate all but three candidate nodal points: (7;_;,0%) and its two
adjacent candidate nodes, (fj,l—(Ar/Zj’2),H*) and (Fji_;1+
(Ar/272),0%). These three points form the endpoints of the
two remaining subintervals, [?j,l—(Ar/21’2), f1 and [fj_1—
(Ar/27%),#]. These subintervals are halved, forming two new candi-
date nodal points, (7 1—(Ar/272),0") and (f;_; +(Ar/22),0%). The
total error is calculated at these two new points, and compared to the
other three remaining candidate points. The point with the lowest
total is selected and labeled (?j,B*). Iterations are continued in this
fashion until the error improvement between subsequent iterations
falls below some threshold. The resultant optimal nodal point is
labeled (r*,0*), which is the optimal location for a single nodal point.
This completes Step 2.

Step 3 results in pairing a second nodal point with (r*,0*) from
Step 2 to form the optimal pair of nodal points. This is accom-
plished by fixing (r*,0*) and repeating Steps 1 and 2 to find a
second point. In each case, the total error is computed using both
nodal points. Step 2 is complete when the optimal companion
node to (r*,0*) is found.

The process then continues for three and more nodal points, until
we have the number of nodes desired. Although the presented
algorithm is based upon a simply connected domain, the algorithm
can be extended to a multiply-connected domain under many
situations. Currently, care is needed to ensure that CVBEM nodal
point branch-cuts lie exterior of the problem domain. Consequently,
multiply connected domains (e.g., including holes and so forth)
become problematic due to the positioning of nodal point branch-
cuts. One approach to handling the branch-cut issue is to split the
problem domain into subdomains, where branch-cuts may lie
exterior of the subdomains. This approach necessitates development
of additional boundary conditions along the new “boundaries”
created in the splitting process. Further research is needed in
exploring application of the methods presented in the subject paper
to multiply connected domains.

3. Implementation on program mathematica

The described algorithm is implemented on computer pro-
gram Mathematica using a modified version of the Mathematica
code found in Dean and Hromadka [4] as a basis.

The algorithmic coding additions were introduced into the
referenced code with the final product shown in Supplementary

2 Note k=0 corresponds to the optimal nodal location from Step 1.

3 If min total error is observed at # =mAr (i.e., at the point farthest from the
domain centroid), we proceed to extend the search beyond this point until a min
error can be found that is strictly between the domain centroid and max. radial
distance considered.
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Material. The coding requirements are not substantial due to the
internal mathematical function capabilities of program Mathe-
matica. Other such programs include MATLAB, among others.

4. Example problems

Example problem 1. Ideal fluid flow over a cylinder in a 90° bend

In order to demonstrate the advantage in considering nodal
point location as a variable to be optimized in the CVBEM (and
also the BEM), a problem is modeled involving ideal fluid flow of
an incompressible irrotational fluid in a 90° bend over a unit
radius cylinder. The exact solution to this potential problem is
given by the complex variable analytic function w(z)=z>4+2z"2,
where the resulting streamline along the problem’s unit circle
boundary forms a boundary of the problem domain. Because the
exact solution is known, it can be used to assess the CVBEM
model success afforded by optimizing node locations. The subject
problem is modeled by the first quadrant of the exact solution
display as shown in Fig. 1, which contains the solution equipo-
tential contours (lines of constant potential function values) and
streamline contours. For this example problem, the study domain
is a simple circular region of radius one located in the first
quadrant and slightly away from the cylinder (see Fig. 1). It is
noted that the CVBEM develops not only an approximation of the
potential function but also the conjugate streamline function.
Furthermore, these two approximation functions are orthogonal
and therefore can be directly used in building traditional flownets
for further detail. Since both approximation functions exactly
solve the Laplace equation, assessment of modeling error on the
problem boundary will adequately measure modeling accuracy in
the interior of the problem domain.

For this example problem, two cases are considered: (1) an
8 node CVBEM model (with all nodes located on the problem

1 2 3 4

Fig. 1. Flownet of the Example Problem 1 Solution: The problem domain is the
area enclosed in the problem boundary as shown. The problem domain is centered
at (2,2). The unit circle cylinder boundary (shown as the boundary of the shaded
quarter disk) is part of the boundary to the underlying ideal fluid flow around a 90
degree bend over a unit radius cylinder.

boundary), (2) a single node CVBEM model with the location of
the single node optimized using the supplied algorithm. For both
models, collocation is used to determine the relevant complex
coefficient values of either approximation function.

The 8-node CVBEM model has modeling nodes evenly spaced
along the circular problem boundary, shown as the points emit-
ting branch cut lines in Fig. 2. Collocation points are also shown as
the other points on the boundary in this figure. Modeling error in
matching boundary conditions is shown in Fig. 3, where colloca-
tion occurs at the relevant evaluation point with shown identifi-
cation (ID). For the single node model, numerous test locations
were examined using the node location algorithm discussed
above. Upon completing the algorithm, the optimum node loca-
tion was determined to be positioned far to the upper right of the
problem domain, located about 20-times the problem domain
diameter away from the problem domain (see Fig. 4). In compar-
ing modeling accuracy between the above two CVBEM models,

-1

Fig. 2. 8-Node CVBEM Approximation. Nodes are shown with Branch cuts
extending outwards.
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Fig. 3. Error in matching the boundary conditions using 8-Node CVBEM Approx-
imation. (Integrated Error=.135).
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Fig. 4. Optimally placed single node using optimization algorithm. The node is
shown far from the boundary with its corresponding branch cut.
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Fig. 5. Error in matching the boundary conditions using single node CVBEM
approximation with optimized location. (Integrated Error=.008).

the single node CVBEM model (with optimized node location)
provided significantly (17 times) better accuracy than did
the 8-node CVBEM model. Consequently, consideration of node
locations not only on the problem boundary but also on the
exterior of the problem domain union boundary provides sig-
nificant improvement of computational modeling accuracy. For
the single node CVBEM model, 5 collocation points are necessary
in order to determine complex coefficients for the CVBEM single
node model (see [1,2]). A plot of modeling error in matching
boundary condition values of the potential function is provided
in Fig. 5.

The single node CVBEM model can be further improved by
introducing a second nodal point and again employing the subject
location optimization algorithm. The resulting two-node CVBEM
model provided further significant improvement in modeling
accuracy (see Appendix A: Figs. 7 and 8). Therefore, including
the nodal point location as part of the modeling solution effort

provides significant improvement in modeling accuracy, resulting
in the reduction in the number of nodes required to achieve the
similar level of modeling accuracy as obtained using many more
boundary nodal points.

Example problem 2. Ideal fluid flow around a 90° bend

For comparison purposes, the described algorithm is used in
the same example problem presented in Dean and Hromadka [4].
For this example, it is known that the function w(z)=z? is the
solution for ideal fluid flow around a 90° corner. As in Dean and
Hromadka, the problem boundary will be defined as the unit
square with corners at (1,1) and (2,2). This example differs from
that shown in Dean and Hromadka [4] in that where Dean and
Hromadka [4] used 8 nodal locations on the problem boundary,
this paper will use only one node.

Before running the algorithm to determine the optimized
nodal location, the Dean and Hromadka approximation was
analyzed to get a comparable modeling error. Fig. 6 shows the
absolute error in matching the boundary conditions from the
Dean and Hromadka [4] solution, which had a total error of .004
on the boundary. Note that this model achieves significantly low
error with 8 nodes.

The error achieved by the algorithm for example problem 2 is
.00001. The algorithm places the single node at polar coordinates
(3.837 rad, 20,000) from the problem domain center. The inte-
grated error that the algorithm achieves with one node is 400
times smaller than that of the cited regular CVBEM model with
8 nodes evenly spaced on the boundary.

The example problems presented focus on the CVBEM compu-
tational results obtained by the optimization of nodal point
locations for the simple case of using only one node in the
modeling process. From the examples, considerable modeling
accuracy is achieved by including the node location as another
degree of freedom to be optimized. For more than one node, the
procedure used by the authors is simply to include additional
nodes to the problem solution, one node at a time, with node
location optimization accomplished after each node is added to
the set of nodes. Currently, the node locations already optimized
are held fixed with the addition of another node. (Research is
needed to ascertain whether all nodal points should be re-
optimized with the addition of another node.) As may be
expected, the second node added to the model solution provides
significant CVBEM modeling accuracy improvement by optimiz-
ing the second node location (while holding the first node
optimized location fixed), but the improvement in location
optimization is typically not as significant as observed with the
first node location optimization. For many problems, depending

0.008  Integrated Error: 0.004

0.006 [

0.004

0.002 [

Absolute Error in Matching Boundary
Conditions

123 4 5 67 8 9 10 11 12 131415 16 17 18 19
Evaluation Point ID

Fig. 6. The error on the boundary using the Dean and Hromadka [4] model.
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on domain configuration and boundary condition complexity,
the advantages afforded by including additional nodes and
optimizing their locations, in reducing modeling error in match-
ing problem boundary conditions, reduce with the inclusion of
additional nodes.

In assessing the utility of optimizing nodal point locations,
other tests considered include adding nodal points, one at a time,
optimizing each new added nodal point location while holding
the prior optimized nodal point locations fixed. As expected, the
first nodal point included in the CVBEM model had the greatest
reduction in modeling error due to nodal point location optimiza-
tion. Each additional nodal point added reduced modeling error,
but demonstrated, in general, less modeling accuracy improve-
ment with respect to optimization of added nodal point location.
In all cases considered, nodal point location optimization, parti-
cularly when location optimization occurs exterior of the problem
domain, resulted in a significantly more accurate model than had
the nodes been restricted to be located only on the problem
boundary, as is the typical situation with boundary element
techniques. The relative modeling improvement not only
depended on the number of nodes already optimized (with
respect to location) and in-place in the problem region, but also
on the complexity of problem boundary conditions. A third factor
to be considered is the problem domain geometry itself, namely,
more complicated problem geometries, involving severe angle
points and multiple segmented geometries, result in greater
modeling improvement by optimization of added nodal point
locations than when the problem domain is a simpler convex
domain geometry. Further research is needed to qualify and
quantify these considerations, among others, when predicting
CVBEM modeling performance improvement due to the optimi-
zation procedures presented.

5. Conclusions

In this paper, an algorithm is presented that facilitates the
search for placement of Complex Variable Boundary Element
Method (CVBEM) or real variable Boundary Element Method
(BEM) nodal points on the problem boundary or exterior of the
problem domain union boundary. For CVBEM and BEM trial
functions involving singularities, such as logarithmic functions
or similar type of basis functions, the location of these trial
function singularities (or “nodes”) is shown to result in significant
differences in resulting approximation functions and their mod-
eling accuracy. In the past, the general procedure for use of
CVBEM and BEM modeling of boundary value problems (such as
the Laplace or Poisson equations, for example) is to locate nodes
directly on the problem boundary. In this paper, however, it is
shown that locating nodes exterior of the problem domain (i.e.,
exterior of the problem domain union problem boundary) can
result in considerable improvement in modeling accuracy. Con-
sequently, optimization of nodal point locations provides another
dimension in improving CVBEM and BEM approximation accu-
racy. If the basis functions satisfy the governing partial differen-
tial equation (such as achieved by the real and imaginary parts of
the CVBEM approximation analytic function for the Laplace and
Poisson equations), then the approximation function develop-
ment effort reduces to minimizing modeling error in matching
problem boundary conditions. The presented algorithm optimizes
node locations by assessing individual node location versus
success in matching problem boundary conditions, optimizing
one nodal point location at a time. The paper demonstrates
the algorithm using two problems where exact solutions are
known. The algorithm is implemented on computer program
Mathematica.
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Appendix A

See Figs. 7 and 8.
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Fig. 7. Solution obtained using the algorithm to place 2 nodes in Example 1.
Visible here is the problem domain, the new set of evaluation points and the 2nd
node and branch cut location. The first node is located as shown in Fig. 4. The node
here is shown with its corresponding branch cut.

0.012 |- Integrated Error: 0.0049
0.010
0.008
0.006
0.004

0.002

Absolute Error Between the Solution and the
CVBEM Approximation on the Boundary

Evaluation Point ID

Fig. 8. Resultant modeling error on the problem boundary using the algorithm to
locate 2 nodes in Example 1. This 2 node approximation produces a little over half
of the error of the one node approximation (see Fig. 5).
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Appendix B. Supplementary materials

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.enganabound.2011.11.008.
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