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G R A P H I C A L A B S T R A C T

A B S T R A C T

The Laplace equation that results from specifying either the normal or tangential force equilibrium equation in

terms of the warping functions or its conjugate can be modeled as a complex variable boundary element

method or CVBEM mixed boundary problem. The CVBEM is a well-known numerical technique that can provide

solutions to potential value problems in two or more dimensions by the use of an approximation function that is

derived from the Cauchy Integral in complex analysis. This paper highlights three customizations to the

technique.

� A least squares approach to modeling the complex-valued approximation function will be compared and

analyzed to determine if modeling error on the boundary can be reduced without the need to find and

evaluated additional linearly independent complex functions.
� The nodal point locations will be moved outside the problem domain.
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� Contour and streamline plots representing the warping function and its complementary conjugate are

generated simultaneously from the complex-valued approximating function.

Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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Method details

The CVBEM has been developed by [1] for the solution of general problems involving Laplace or
Poisson equations in multiple dimensions. Modeling begins with a simple closed contour of straight line
segments. In a two dimensional complex plane, let V be bounded by a simple closed contour, G, such that
G ¼
[n
j¼1

G j: (1)

By defining (k+1) equidistant nodal points in each Gj such that zj,1 and zj,k+1 are the endpoints of Gj, the
global nodal coordinates are related to local nodal coordinates by zj,1 =zj and zj,k+1 =zj+1,1 =zj+1. Fig. 1
shows the global and local nodal numbering conventions. If one defines complex numbers vji at each
node zji, then degree k complex polynomials Nk

j ðzÞ are uniquely defined on each boundary element Gj.
A global trial function of order k is defined by

GkðzÞ ¼
Xn

j¼1

d jN
k
j ðzÞ; z2G; (2)

where

d j ¼
1 z2G;
0 otherwise;

�

Gk(z) is continuous on G and

lim
maxjG j j!0

GkðzÞ ¼ vðzÞ: (3)

It is assumed that v(z) is analytic on G[V and that each vji ¼ vðzjiÞ.
Along the boundary G, or exterior to the problem domain union boundary, there are defined n nodal

points. For development purposes, the n nodes are assumed defined on G [8]. Later, we will move the
nodes outward away from the boundary to demonstrate an addition degree of freedom. The simple
closed contour, G, in Fig. 2 is divided into n boundary elements, Gj�1, Gj,. . .,Gn. For each boundary
element, an interpolating polynomial will be used to create a piecewise continuous global interpolation
function. In Fig. 2, the boundary, G, is ‘‘severed’’ at s=0 and in the positive direction spans until s=L, the
arc length of G. In Fig. 3, the boundary is ‘‘flattened’’ and the piecewise function presented. Here, k=1 is
chosen, and the complex polynomials Nk

j ðzÞ are uniquely defined as first order linear functions.
The piecewise function of Fig. 3 is

Nk
j ðzÞ ¼

z � z j�1

z j � z j�1
z2G j�1

z jþ1 � z
z jþ1 � z j

z2G j

0 otherwise

8>>>><
>>>>:

(4)

Clearly, by its definition on G, Nk
j ðzÞ forms a basis as each boundary element produces

an independent linear function. Note that the sum of the respective basis function terms is
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Fig. 3. Linear interpolation basis functions, Nk
j ðzÞ.
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continuous on the boundary G for all z2G. The basis function will be used to define a linear global trial
function,

GkðzÞ ¼
Xn

j¼1

Nk
j ðzÞw j (5)

which is the sum of all nodal basis functions multiplied by a corresponding complex coefficient, w j, the
nodal point j value of the function being approximated.
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Consider the approximation function v̂kðzÞ defined by

v̂kðzÞ ¼
1

2pi

I
G

GkðzÞdz
z � z

; z =2G z2V: (6)

From Eq. (2), the global trial function is substituted into the Cauchy Integral formula and integrated
over a simply connected two-dimensional complex domain, V, with boundary, G, such that,

I
G

GkðzÞdz
z � z

¼
I

z

P
d jN

k
j ðzÞdz

z � z
¼
XI

G j

Nk
j ðzÞdz
z � z

: (7)

On each Gj, define a local coordinate system by

z j ¼ z jðs jÞ ¼ z jðz jþ1 � z jÞs j; z j 2G j; 0 � s j � 1 (8)

It follows that

I
G j

Nk
j ðzÞdz
z � z

¼
Z 1

0

Nk
j ðs jÞds j

s j � g j

(9)

where Nk
j ðs jÞ ¼ Nk

j ðz jðs jÞÞ, and gj =(z�zj)/(zj+1�zj) for z2G.
Eq. (9) is solved by factoring (sj�gj) from Nk

j ðs jÞ. Let Nk
j ðs jÞ be of the form

Nk
j ðs jÞ ¼

Xk

i¼0

Ci
js

i
j; 0 � si

j � 1

where the C j are complex constants in the form (a+bi). Division of Nk
j ðs jÞ by (sj�gj) gives

Z 1

0

Nk
j ðs jÞds j

s j � g j

¼ Rk
jðzÞ þ Nk

j ðg jÞH j (10)

where Rk
jðzÞ is a complex polynomial of degree k�1, and

H j ¼ ln
z jþ1 � z

z j � z
¼ ln

d jþ1ðzÞ
d jðzÞ

þ iu jþ1; jðzÞ: (11)

Note that dj(z)= |zj�z| and uj+1,j(z) is the central angle between points zj+1, zj, and z. Fig. 4 shows the
special case as z approaches G in the limit.

From Eqs. (6), (7), (9) and (10), summation of the complex boundary element contributions from
the m boundary element gives

2piv̂kðzÞ ¼
X

Rk�1
j ðzÞ þ

X
Nk

j ðg jÞH j (12)

with Rk�1ðzÞ ¼
P

Rk�1
j ðzÞ, Eq. (10) simplifies to

v̂kðzÞ ¼
1

2pi
Rk�1ðzÞ þ

X
Nk

j ðg jÞH j

h i
: (13)

In Eq. (13), it is noted that the Nk
j ðg jÞ have the form of the assumed shape functions on each gj.

Letting node z1 be on the branch cut of the complex logarithm function ln(z�z) such that z2V and
z2G (see Fig. 5), then (13) can be expanded as

v̂kðzÞ ¼
1

2pi
Rk�1ðzÞ � 1

2pi

X
Pk�1

j ðz� z jÞlnðz� z jÞ þ Nk
mðzÞ; (14)

where Pk�1
j is a polynomial of degree (k�1) defined by

Pk�1
j ¼

ðNk
j ðg jÞ � Nk

j�1ðg j�1ÞÞ
ðz� z jÞ

(15)
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Fig. 4. CVBEM linear trial function geometry.[(Fig._5)TD$FIG]

BRANCH CUT

Fig. 5. Branch cut of the function ln(z�z), z2G.
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and ln(z�zj) is the principal value of the logarithm function. From the continuity of Gk(z), it is seen that
at the nodal coordinate z ,
j

Nk
j ðg jÞ � Nk

j�1ðg j�1Þ ¼ 0 (16)

and that (z�zj) is a factor as shown in (15). In (14), the Nk
m term appears due to the circuit around the

branch point of the multiple-valued function ln(z�zj).
Letting

RkðzÞ ¼ 1

2pi
Rk�1ðzÞ þ Nk

mðzÞ;

then

v̂kðzÞ ¼ RkðzÞ � 1

2pi

X
Pk�1

j ðz� z jÞlnðz� z jÞ: (17)
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From (17), it is seen that v̂kðzÞ is continuous over V and has removable singularities at each boundary

element endpoint (nodal coordinate zj, j=1, 2, 3, . . ., m).That is Rk(z) and Pk�1

j are continuous complex
polynomials, and

lim
z! z j

ðz� z jÞlnðz� z jÞ ¼ 0; i:e: v̂kðz jÞ ¼ Rkðz jÞ

Note that since v̂kðzÞ is analytic in V and v̂kðzÞ ¼ f̂ðzÞ þ iĉðzÞ where f̂ðzÞ and ĉðzÞ are two
dimensional potential and stream functions which satisfy the Laplace equation exactly over V. By
forcing the approximation values of v̂kðzÞ to be arbitrarily close (within some e) to the boundary-
condition values of v(z) on G, then it is guaranteed by the maximum modulus theorem that the
approximation of v(z) is bounded by jvðzÞ � v̂ðzÞj � e, for all z2V.

Because the CVBEM results in a two-dimensional function which is an exact solution to the
governing partial differential equation on V, convergence of v̂ðzÞ to v(z) is then achieved on V[G by
forcing convergence on G. This is shown from (3) and (6) by

lim
maxjG j j!0

I
G

GkðzÞdz
z � z

¼
I

G

limmaxjG j j!0GkðzÞdz
z � z

¼
I

G

vðzÞdz
z � z

¼ 2pivðzÞ: (18)

The global trial function is continuous. Thus, ŵðzÞ is analytic in V, allowing ŵðzÞ to be used as an
approximation function defined almost everywhere (‘‘ae’’) inside V as well as exterior to V. This
characteristic separates the CVBEM from other approximations techniques. When solved, the CVBEM
approximating integral becomes an approximating function of the form

ŵðzÞ ¼ N0ðzÞ þ N1ðzÞ þ
Xn

j¼1

C jðz� z jÞln jðz� z jÞ (19)

with

C j ¼ a j þ ib j

where aj and bj are real constants to be determined, and

N0ðzÞ ¼ ða0 þ ib0Þ and N1ðzÞ ¼ ða�1 þ ib�1Þðxþ iyÞ

where a0, b0, a�1, and b�1 are also real constants to be determined. The method steps [6] start by using
the construct (z�zj)=Rje

iuj, defined at each node j, with location zj, Eq. (19) becomes

ŵðzÞ ¼ N0ðzÞ þ N1ðzÞ þ
Xn

j¼1

ða j þ ib jÞR je
iu j ln jðR je

iu jÞ: (20)

Using Euler’s formula of eiu=(cosu+ isinu), the CVBEM approximation function becomes

ŵðzÞ ¼ ða0 þ ib0Þ þ ða�1 þ ib�1Þðxþ iyÞ þ
Xn

j¼1

ða j þ ib jÞR jðcosu j þ isinu jÞln jðR je
iu j Þ: (21)

Further evaluation gives

ln jðR je
iu j Þ ¼ ln jðR jÞ þ iu j: (22)

Combining terms from Eqs. (21) and (22),

ŵðzÞ ¼ ða0 þ ib0Þ þ ða�1 þ ib�1Þðxþ iyÞ þ
Xn

j¼1

ða jR jcosu j þ ia jR jsinu j þ ib jR jcosu j

þ i2b jR jsinu jÞðln jðR jÞ þ iu jÞ: (23)
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Collecting real and imaginary terms yield

ŵðzÞ ¼ ða0 þ ib0Þ þ ða�1 þ ib�1Þðxþ iyÞ þ
Xn

j¼1

ða jR jðln jðR jÞcosu j � u jsinu jÞ

� b jR jðln jðR jÞsinu j þ u jcosu jÞ þ i½a jR jðln jðR jÞsinu j þ u jcosu jÞ

þ b jR jðln jðR jÞcosu j � u jsinu jÞ�Þ: (24)

We can now separate the approximation function into real, f̂, and imaginary, ĉ, parts:

ŵðzÞ ¼ f̂ðzÞ þ iĉðzÞ (25)

where the potential functions, or real parts, are given by

f̂ðzÞ ¼ a0 þ ða�1x� b�1yÞ þ F̂ðzÞ (26)

for
F̂ðzÞ ¼

Xn

j¼1

ða jR jðln jðR jÞcosu j � u jsinu jÞ � b jR jðln jðR jÞR jsinu j þ u jcosu jÞÞ (27)

and where the stream functions, or imaginary parts, are given by

ĉðzÞ ¼ b0 þ ðb�1xþ a�1yÞ þ ĈðzÞ (28)

for

ĈðzÞ ¼
Xn

j¼1

ða jR jðln jðR jÞsinu j þ u jcosu jÞ þ b jR jðln jðR jÞcosu j � u jsinu jÞÞ: (29)

Recall that ln j includes the effect of the nodal point logarithmic branch cut rotations.

Matrix formulation and model strategy

After the real and imaginary parts of the CVBEM approximation equation have been developed, the
next step is to find the constants, an, and bn, in the f̂ and ĉ functions. The two numerical modeling
strategies investigated and subsequently compared for both accuracy and efficiency in this paper are
collocation and a least squares approach in a Hilbert space. Each has advantages and disadvantages.
Our goal is to highlight which modeling strategy works best for mixed boundary value problems with
irregular boundaries.

Collocation

For collocation, the approach is to use the CVBEM by juxtaposing Eq. (19) at each nodal point specified
on G (in the limit as z approaches G from inside V). Generally, only one nodal value of either f or c is
known at each nodal point [4]. Consequently for m nodes specified on G, there are 2m values of {fj, cj},
and only m nodal values are known as boundary conditions. Collocating Eq. (19) at each node generates
m equations for the m unknown nodal values. The resulting m�m matrix system results in the
determination of the v̂ðzÞ approximator, which is analytic in V. That is, v̂ðzÞ operates on the 2m nodal
values {fj, cj} and the coordinate z. Next is to develop an analytic continuation of the v̂ðzÞ approximator
which matches the specified and computed 2m nodal values of G. The advantage of using Eq. (19) is that
the Cauchy integral of Eq. (6) has the property that v̂ðzÞ only has non-zero value in V[G. That is,

v̂ðzÞ ¼ v̂ðzÞ; z2V[G;
0 z =2V[G:

�
(30)

Consider the real portion of the CVBEM with one node for collocation point k. The resulting
equation from Eq. (26) is:

f̂kðzÞ ¼ f̂kðxk þ iykÞ ¼ a0 þ a1xk � b1yk þ a2 p1;k � b2q1;k (31)
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where
pn;k ¼ Rn;kðlnðRn;kÞcosun;k � un;ksinun;k

qn;k ¼ Rn;kðlnðRn;kÞsinun;k � un;kcosun;k
: (32)

Evaluate the above with the five necessary potential collocation points on the problem boundary.
This will result in five linearly independent equations for five collocation points on G,

f̂kðzÞ ¼ f̂kðx1 þ iy1Þ ¼ a0 þ a1x1 � b1y1 þ a2 p1;1 � b2q1;1

f̂kðzÞ ¼ f̂kðx2 þ iy2Þ ¼ a0 þ a1x2 � b1y2 þ a2 p1;2 � b2q1;2

f̂kðzÞ ¼ f̂kðx3 þ iy3Þ ¼ a0 þ a1x3 � b1y3 þ a2 p1;3 � b2q1;3

f̂kðzÞ ¼ f̂kðx4 þ iy4Þ ¼ a0 þ a1x4 � b1y4 þ a2 p1;4 � b2q1;4

f̂kðzÞ ¼ f̂kðx5 þ iy5Þ ¼ a0 þ a1x5 � b1y5 þ a2 p1;5 � b2q1;5

: (33)

The matrix system to be solved is simply Ax=b, where A is a coefficient matrix and b are the known
potential values at each of the collocation points:

f̂1

f̂2

f̂3

f̂4

f̂5

2
666666664

3
777777775
¼

1 x1 �y1 p1;1 �q1;1

1 x2 �y2 p1;2 �q1;2

1 x3 �y3 p1;3 �q1;3

1 x4 �y4 p1;4 �q1;4

1 x5 �y5 p1;5 �q1;5

2
6666664

3
7777775

a0

a1

b1

a2

b2

2
66664

3
77775: (34)

Once the system has been configured, substitute the coordinates of the collocation points into the
second and third column of the coefficient matrix. It is also necessary to calculate the radius and angle
of the collocation points from the singleton node, (see Fig. 6).

The final step is to solve the matrix system. Once these values are known, they can be substituted back
into the original equation for f̂ðzÞ. The f̂ function can now be used to approximate all the potential values
within the problem domain. Collocation can also be used in the same way to solve for the streamline
equation, ĉðzÞ. The most significant change is that instead of solving for a0, one must solve for b0.

Least squares

For least squares, the approach is similar except now we will use the evaluation points on the
known boundary to create an overdetermined system. From Fig. 1, the values, v jðzÞ are known for
either f jðzÞ or c jðzÞ or both. We can now create a vector of measurements along the boundary such
that values v1 . . . vm are available. Using n basis functions (z�zj) ln(z�zj), we wish to find the complex
coefficients, C jðzÞ such that the approximating function
[(Fig._6)TD$FIG]

Branch Cut

Fig. 6. Solving for R and u in Eq. (32).
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v̂ðzÞ ¼
Xn

j¼1

C jðzÞðz� z jÞlnðz� z jÞ (35)

minimizes the sum of squares such that

FðC1;C2; � � � ;CnÞ ¼
Xm

j¼1

bk �
Xn

j¼1

C jðzÞðz� z jÞlnðz� z jÞÞ2 ¼ min:

0
@ (36)

The need for using Eq. (19) becomes apparent when determining the approximate boundary which
is associated with the CVBEM approximator functions, v̂kðzÞ.

Approximate boundary

In applying the CVBEM to mixed boundary problems, it is necessary to develop an approximate
boundary, Ĝ, upon which v̂kðzÞ satisfies the problem boundary conditions. Engineering problems
related to stress and strain are adequate candidates for CVBEM analysis. For stress-free boundary
conditions, Ĝ is the collection of points defined by

Ĝ ¼ z : f̂ðzÞ ¼ 1

2
jz2j

� �
; (37)

where ŵðzÞ ¼ f̂ðzÞ þ iĉðzÞ. Also |z|2 =x2 +y2 where |z| is measured from a selected central point in V. If
Ĝ coincides with G, then necessarily v̂ðzÞ ¼ vðzÞ on V[G. The utility of the approximate boundary
concept is in the evaluation of the approximation error. Instead of the analysis of abstract error
quantities, the goodness of approximation is determined by visually inspecting the closeness-of-fit
between Ĝ and G. In those regions, where Ĝ deviates substantially from G, additional evaluation points
are placed to reduce the approximation errors from using the selected shape functions.

Analysis and numerical results

As an example of the complex variable boundary element method consider the twisting behavior
of a homogeneous, isotropic shaft of an arbitrary, but uniform, cross section that is fixed at one end
and subjected to a twisting couple at the other end. If the force and deformation behavior is of
interest at some location somewhat removed from either end, then the stress and strain
characteristics of the cross section as depicted in Fig. 7 are described by either of the following
equations [3]:

@2cðx; yÞ
@x2

þ @2cðx; yÞ
@y2

¼ 0; (38)

2 2
@ fðx; yÞ
@x2

þ @ fðx; yÞ
@y2

¼ 0: (39)

The quantity c(x, y) is the warping function of the cross-section whereas f(x, y) is the conjugate of
c(x, y). If the warping function is known over the cross-section, then the out-of-plane warping
displacement and the in-plane shear stresses can be calculated from the expressions

v ¼ ucðx; yÞ; txz ¼ mu
@cðx; yÞ

@x
� y

� �
; tyz ¼ mu

@cðx; yÞ
@y

� x

� �
: (40)

In the above expressions u is the angle of the twist per unit length, m is the shear modulus, and x, y

denote the coordinates of a point located from the center of twist. Furthermore, it should be noted that
z represents a coordinate axis and should not be confused with the complex variable z=x+ iy. If, on the
other hand, the problem is posed in terms of the complementary function f(x, y) then the shear
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stresses are determined from

txz ¼ mu
@fðx; yÞ

@y
� y

� �
; tyz ¼ mu � @fðx; yÞ

@x
þ x

� �
: (41)

While the form of Eqs. (38) and (31) are identical, a solution strategy emerges depending on the
manner in which the boundary conditions are specified. If the boundary condition of zero normal stress
around the perimeter is posed, then a Neumann boundary condition, i.e. specified normal derivative, best
describes the problem. In such a case the nonuniform torsion problem is best posed in terms of the
warping function,c(x, y). If on the other hand, the problem is best posed in terms of zero shear around the
perimeter, then a Dirichlet boundary condition, i.e. specified functions, best describe the problem. In
such a case the problem is best posed in terms of the complementary function, f(x, y). While either
solution method is well adapted for solid shafts, it is generally more convenient to operate directly with
the warping function, c(x, y), rather than its conjugate, f(x, y), for hollow cross-sections.

The following example is used to analyze the CVBEM with established solutions [7] for shaft cross-
sections of smooth and sharp corner profiles. Consider the torsion of a solid elliptical cross section with
major axis a and minor axis b. The shear–stress-free boundary condition can be expressed in terms of
the conjugate function f(x, y) expressed on the boundary as

fðx; yÞ ¼ 1

2
ðx2 þ y2Þ (42)

The conjugate function f(x, y) as well as the shear stresses can be shown to be

fðx; yÞ ¼ 1

2
ðx2 þ y2Þ � a2b2 x2

a2
þ y2

b2
� 1

� �
ða2 þ b2Þ

�1
(43)

txz ¼ �mu
2ya2

2 2
(44)
ða þ b Þ

2xb2
tyz ¼ �mu
ða2 þ b2Þ

(45)
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Fig. 8 displays the approximate boundary for 6 node (a) collocation and (b) least squares models
taken along a very small portion of the elliptical boundary. The deviation of Fig. 8a is due to error. Fig.
8b shows some error, but nearly as much. Fig. 9 shows the relative error for the 6-node model,
respectively. The CVBEM relative error along the quarter elliptical section boundary is computed as
½f̂ðx; yÞ � fðx; yÞ�=fðx; yÞ where f̂ðx; yÞ is the CVBEM approximate solution and f(x, y) is the exact
solution. The quarter model of Fig. 7 was chosen to take advantage of the problem symmetry and to
demonstrate the imposition of f boundary conditions along the exterior curved edge and c along the
interior straight edge which is the side extending from the origin to the point (a, 0) and the line
extending from the origin to the point (0, b) where a and b are 6.25 and 3.75 respectively. Table 1
summarizes the exact and computed warping function and shear–stress values at points in V using
the collocation method. Table 2 demonstrates the exact and warping function calculation using least
squares for the same number of basis functions, which are the nodes. The graphical depiction of the
CVBEM in Fig. 10 uses computer programs MATLAB, Mathematica, and MATLink to model the mixed
boundary problem. Fig. 11 is a time analysis of the efficiency of collocation compared to least squares.

Additional information

The complex variable boundary element method (CVBEM) has been shown to be a mathematically
sound approach for modeling two-dimensional potential problems [2]. The foundations of the CVBEM
method rests in complex variable theory, namely, the Cauchy integral formula. It tells us that if a
[(Fig._9)TD$FIG]
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Fig. 9. CVBEM relative error along the quarter elliptical section boundary computed as ½f̂ðx; yÞ � fðx; yÞ�=fðx; yÞwhere f̂ðx; yÞ is

the CVBEM approximate solution and f(x, y) is the exact solution.



Table 1
CVBEM 6-node model collocation method.

x y Exact CVBEM(f) Error(%) Shear(txz) CVBEM(txz) Error(%)

1 1 10.3401 10.2159 1.201 �1.47059 �1.43278 2.571*10�2

1 2 9.63419 9.55065 8.671*10�1 �2.94118 �2.89735 1.49*10�2

1 3 8.45772 8.4218 4.248*10�1 �4.41176 �4.36002 1.173*10�2

1 4 6.81066 6.82913 2.712*10�1 �5.88235 �5.82853 9.149*10�3

1 5 4.69301 4.74572 1.123 �7.35294 �7.35907 8.335*10�4

2 1 11.046 10.9448 9.16*10�1 �1.47059 �1.43203 2.622*10�2

2 2 10.3401 10.2775 6.053*10�1 �2.94118 �2.90204 1.331*10�2

2 3 9.1636 9.14085 2.483*10�1 �4.41176 �4.37161 9.101*10�3

2 4 7.51654 7.53193 2.047*10�1 �5.88235 �5.84846 5.761*10�3

2 5 5.3989 5.43676 7.013*10�1 �7.35294 �7.3463 9.031*10�4

3 1 12.2224 12.1451 6.331*10�1 �1.47059 �1.43723 2.268*10�2

3 2 11.5165 11.4729 3.794*10�1 �2.94118 �2.90729 1.152*10�2

3 3 10.3401 10.3304 9.354*10�2 �4.41176 �4.37762 7.739*10�3

3 4 8.69301 8.71804 2.878*10�1 �5.88235 �5.84635 6.12*10�3

3 5 6.57537 6.64249 1.021 �7.35294 �7.29947 7.272*10�3

4 1 13.8695 13.8153 3.91*10�1 �1.47059 �1.44091 2.018*10�2

4 2 13.1636 13.1385 1.904*10�1 �2.94118 �2.91248 9.758*10�3

4 3 11.9871 11.9904 2.741*10�2 �4.41176 �4.38371 6.358*10�3

4 4 10.3401 10.3715 3.035*10�1 �5.88235 �5.85362 4.884*10�3

4 5 8.22243 8.28744 7.906*10�1 �7.35294 �7.30922 5.946*10�3

5 1 15.9871 15.9574 1.862*10�1 �1.47059 �1.4448 1.754*10�2

5 2 15.2813 15.2755 3.74*10�2 �2.94118 �2.9181 7.845*10�3

5 3 14.1048 14.1217 1.197*10�1 �4.41176 �4.38984 4.969*10�3

5 4 12.4577 12.4938 2.897*10�1 �5.88235 �5.86819 2.408*10�3

5 5 10.3401 10.3757 3.449*10�1 �7.35294 �7.37614 3.155*10�3

Table 2
CVBEM 6-node model least squares method.

x y Exact CVBEM(f) Error(%) Shear(txz) CVBEM(txz) Error(%)

1 1 10.3401 10.3158 2.352*10(�1) �1.47059 �1.46325 4.989*10(�3)

1 2 9.63419 9.61789 1.692*10(�1) �2.94118 �2.93276 2.862*10(�3)

1 3 8.45772 8.45026 8.825*10(�2) �4.41176 �4.40243 2.115*10(�3)

1 4 6.81066 6.81127 8.974*10(�3) �5.88235 �5.87834 6.822*10(�4)

1 5 4.69301 4.67955 2.868*10(�1) �7.35294 �7.39894 6.256*10(�3)

2 1 11.046 11.0267 1.745*10(�1) �1.47059 �1.46358 4.764*10(�3)

2 2 10.3401 10.328 1.166*10(�1) �2.94118 �2.93367 2.552*10(�3)

2 3 9.1636 9.15949 4.484*10(�2) �4.41176 �4.40323 1.935*10(�3)

2 4 7.51654 7.5224 7.794*10(�2) �5.88235 �5.86995 2.109*10(�3)

2 5 5.3989 5.42563 4.951*10(�1) �7.35294 �7.31646 4.962*10(�3)

3 1 12.2224 12.2078 1.199*10(�1) �1.47059 �1.46453 4.117*10(�3)

3 2 11.5165 11.5081 7.308*10(�2) �2.94118 �2.93486 2.146*10(�3)

3 3 10.3401 10.3379 2.071*10(�2) �4.41176 �4.40548 1.424*10(�3)

3 4 8.69301 8.69823 6.004*10(�2) �5.88235 �5.8723 1.71*10(�3)

3 5 6.57537 6.60224 4.087*10(�1) �7.35294 �7.31058 5.761*10(�3)

4 1 13.8695 13.859 7.583*10(�2) �1.47059 �1.46465 4.036*10(�3)

4 2 13.1636 13.1589 3.61*10(�2) �2.94118 �2.93558 1.904*10(�3)

4 3 11.9871 11.9871 1.129*10(�4) �4.41176 �4.40877 6.778*10(�4)

4 4 10.3401 10.3374 2.601*10(�2) �5.88235 �5.89386 1.957*10(�3)

4 5 8.22243 8.19223 3.673*10(�1) �7.35294 �7.39874 6.229*10(�3)

5 1 15.9871 15.9812 3.693*10(�2) �1.47059 �1.46561 3.386*10(�3)

5 2 15.2813 15.2803 6.438*10(�3) �2.94118 �2.93539 1.966*10(�3)

5 3 14.1048 14.1121 5.172*10(�2) �4.41176 �4.40116 2.404*10(�3)

5 4 12.4577 12.4714 1.101*10(�1) �5.88235 �5.88836 1.02*10(�3)

5 5 10.3401 10.2999 3.884*10(�1) �7.35294 �7.48702 1.823*10(�2)
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Fig. 10. Simultaneous contour plots of the streamline and potential functions. The two real-valued functions, f̂ðzÞ and ĉðzÞ,
relate stress and strain within the domain and are the real and complex components of the complex-valued approximating

function v̂ðzÞ ¼ f̂ðzÞ þ iĉðzÞ.
[(Fig._11)TD$FIG]

Fig. 11. Time comparison for collocation versus least squares method.
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function, v, is analytic within and on a simple closed contour, G, then the values of v interior to G are
completely determined by the values on G. In other words, to determine the values within the domain,
V, one simple need only know the values on the boundary. Thus, an approximation function is
developed that is analytic over the problem domain (i.e. possesses derivatives of all orders) and has
both real and imaginary parts which exactly solve the Laplace equation within V.
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Error analysis is an area that makes the CVBEM particularly appealing. It is unique among other
numerical methods in that the CVBEM approximating function can be evaluated directly to analyze
the error of the approximation. This is because the CVBEM develops an exact representation of the
modeling error by the determination of an ‘approximate boundary’ where the CVBEM approximation
exactly satisfies the boundary conditions. That is, the approximate boundary is the locus of points
where the CVBEM approximation meets the boundary condition values. This approach is in stark
contrast to other numerical methods in their analysis of error. Two sources of error are primary in
most numerical methods. The two sources consists of error that results from the approximation in
solving the governing equation, and error that result in solving the boundary conditions continuously.
Popular numerical methods such as finite elements (FEM) and finite differences (FDM) generate both
types of errors in modeling potential problems. Model accuracy is usually estimated by comparing the
change in results by increasing the number of nodal points. By this the analyst is seeking convergence
by showing that the result is both stable and consistent.
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