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Optimization Algorithm for Locating 
Computational Nodal Points in the 

Method of Fundamental Solutions to 
Improve Computational Accuracy in 

Geosciences Modeling
Authors
Demoes, Noah J., Bann, G.T, Wilkins, B.D, Grubaugh, K.E., Boucher, R., Hromadka II, T.V. 
AS-0020

Introduction 
In this paper, the well-known three-dimensional source 

function is used as the basis function family from which specific 
basis functions are selected for an approximation function. 
The three-dimensional potential function approximation (real 
variable) examined is  

where the cj’s are constant real-valued coefficients determined 
by collocation of the approximation to candidate collocation 
points defined on the problem boundary; and the Rj’s are the 
usual non-zero radial distance measures between the nodal 
point locations (Pj’s) and arbitrary point P(x,y,z). Other funda-
mental basis functions may be used that satisfy the governing 
partial differential equation (PDE) which in the current case, is 
the elliptic Laplace equation. Although variations on the PDE 
and additional sophistication may be readily included in the 
approximation, we only carry forward the basic formulation of 
the above equation. The focus of this paper is the description of 
the proposed nodal position optimization algorithm. As a case 
study, a three-dimensional brick-geometry problem domain is 
examined, representative of a high-rise building foundation 
element that is located in the midst of a highly urbanized 
area such as Los Angeles, California. The relevant soils are 
expansive clays and soil-water is abundant. At issue are the 

solid-water pressures for purposes of designing dewatering 
system elements and protection against soil-water leakage 
in subterranean structures such as parking garages. In the 
problem, this geometry is positioned in the first octant of the 
usual three-dimensional coordinate system. The three dimen-
sions are specified to be of different value. Figure 1 displays 
the problem setting.

The 3D geometry under detailed analysis has dimensions 
(x, y, z) = (8, 4, 2). Several such elements are deployed in the 
building foundation, but only one such element is examined in 
this paper. For demonstration purposes, two three-dimension-
al (3D) potential functions are examined as case situations. 
These two 3D functions are defined by,

Both of the above potential functions are entire functions 
defined throughout 3D space, and with values known continu-
ously on the test problem boundary.

Literature Review of MFS and BEM 
Nodal Point Positioning Techniques

The paper by C. S. Chen (2016) discusses a brief history of the 
Method of Fundamental Solutions (MFS) and the simplicity 
associated with this method that makes the method appealing 
[1]. In [1], Chen attempts to find the optimal node locations 

Keywords: Method of Fundamental Solutions, Optimization Algorithm, Complex Variable Boundary Element Method

Abstract
Using the Complex Variable Boundary Element Method (“CVBEM”) to model ideal fluid flow, a new algorithm is applied 
to an approximation method that reduces computational requirements while increasing matrix solution demands. Ideal 
fluid flow is examined by use of the algorithm with the CVBEM as a case study. Traditionally, the modeling nodes are 
placed on or close to the problem geometry boundary in a somewhat regular pattern. In the current paper, an algorithm 
is developed and demonstrated that optimizes node locations by examining the possible locations for nodes exterior of 
the problem domain and then measuring the computational accuracy of the corresponding approximation function with 
respect to the problem boundary conditions continuously specified on the problem geometry boundary surface. Application 
of the analysis approach to other similar problems in Geosciences is straight forward. A three-dimensional application 
towards modeling groundwater flow about a building foundation is examined as a case study. The methodology is gaining 
value within the Geosciences toolbox as experience with complex computational techniques continues to advance. The 
computational Method of Fundamental Solutions is also investigated with similar success.

Peer-Reviewed Article
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for the MFS by utilizing two different search algorithms. Like 
many other computational methods, the origins of the MFS 
sprang from the convergent growth of computational think-
ing that coincides with the evolution of computational power 
as predicted by Gordon Moore [2]. The relationship between 
classic generalized Fourier Series theory [3] and the MFS, 
as well as many other computational approaches, including 
the more specialized Complex Variable Boundary Element 
Method (CVBEM) [4], is readily apparent. Many of these com-
putational techniques can be shown to be generalized Fourier 
Series using specialized basis functions. For example, DeMoes 
(2018), in “35 Years of Advancements with the Complex 
Variable Boundary Element Method” (examines four different 
families of complex variable analytic basis functions [5]. In 
that paper, the computational approach is identical between 
schemes except that the basis function family is different. 
Yet, all these methods have the same underpinnings rooted 
in the generalized Fourier series approach to solving Partial 
Differential Equations (PDE). Additionally, the placement of 
both modeling node and collocation points were predetermined 
to be uniformly distributed without attempt to optimize the 
node and collocation point locations. In [1] and [6], among 
other papers [7–10], attention is paid to examining how to 
select locations for positioning computational nodes, among 
other issues, with no clear conclusion as to the best method 
for selecting computation node locations. For example, in [9] 
Carlos Alves uniformly distributes collocation points on the 
problem boundary and sources outside the boundary without 
determining which locations are best with use of the MFS. In 
2015, Chen attempted to create an algorithm to find source 
locations that were ”satisfactory” without proving the source 
locations to be the global maximum [10]. These papers indicate 
that there is significant variation in computational results 
depending on two key topics. The first is the choice of node 
locations. The second is the choice of collocation point loca-
tions. In the current paper, the focus is toward presenting a 
computational algorithm that addresses the computational 
node positioning problem by saturating a surrounding space 
of the problem domain with candidate node locations to be 
subsequently assessed in multiple node models based on the 
MFS, using the standard source function to generate basis 
functions. Of course, other PDE formulations and the choice 
of basis functions can be examined accordingly as long as they 
satisfy the Laplace equation and are analytic. Because colloca-
tion point locations are also subject to end-user preferences, 
the presented positioning algorithm used for selecting node 
locations is also applied to selecting collocation point locations 
on the problem boundary. Consequently, a set of ordered pairs 
of combinations of candidate locations of (node, collocation 
point) are developed and then examined as to computational 
model performance. 

Thus, the approximation function includes node location 
and collocation location as variables as well as node and col-
location point ordered pairs. The effectiveness of a particular 
model is measured, in this paper, by consideration of the usual 
RMS error (or E2 error) in matching problem boundary condi-
tions and also examination of the maximum absolute value 
(or E∞ error) in fitting to the problem boundary conditions. 
Obviously, other error norms can be examined. In the current 
paper, the effectiveness of the model is described by the dual 
measures of (E2,E∞). 

The algorithm examined in this paper initiates by assessing 
the effectiveness of using a single node MFS model. This is the 
N=1 situation of the algorithm. All candidate node locations 
are examined, in turn, in developing the respective single node 

MFS model. Furthermore, the node positioning is cascaded 
with all candidate collocation point positions, producing a set 
of single node MFS models, each with a different node and 
collocation point combination. Once the entire space of said 
combinations are examined, the algorithm chooses the posi-
tioning ordered pair that has the minimum error measure out-
come. This positioning order pair is then considered optimized 
and held fixed for further use in the evolving algorithm. The 
algorithm then continues to the N=2 situation by developing 
all possible two-node and two-collocation point combinations. 
As with the N=1 situation described above, all possible MFS 
models are developed and the corresponding error measures 
evaluated. However, in this situation the first node and the 
first collocation point optimized locations from the N=1 situ-
ation described above are retained. As before, the algorithm 
chooses the second node and the second collocation point loca-
tions that minimize either of the error measures defined above. 
This completes the N=2 situation. The algorithm continues to 
the N=3 situation, and hence to larger N value situations, fol-
lowing the procedures described above. As the N value of the 
situation increases, the approximation computational error 
measure is reduced. 

However, the use of the computational MFS involves issues 
such as the stability and accuracy of the underlying matrix 
solver. In our work, the matrix solver is a barrier that was 
not further examined. But because the algorithm results in 
a reduced error measure as N increases, the computational 
experiments indicate that fewer nodes and fewer collocation 
points can be used yet produce computational error measures 
that are as low as when using much larger but uniformly 
distributed node and collocation points. This means that with 
fewer nodes and collocation points involved in the MFS model, 
the matrix solver issue is generally more successful in produc-
ing a stable outcome.

Optimization Algorithm Description
There are three types of modeling points that are used to 

determine the approximation function and its accuracy. The 
three types of points are candidate nodal points, candidate 
collocation points, and evaluation points. The candidate nodal 
points are points positioned exterior of the problem boundary 
that ultimately are the location of the basis function nodes 
used in the approximation function. The collocation points 
are points located on the problem domain that have known 
potential values and are used as the boundary conditions 
when determining the coefficients for each basis function in 
the approximation function. Lastly, the evaluation points are 
points on the problem boundary at different locations than the 
collocation points that enable the determination of error in 
the approximation function. Unlike the collocation and nodal 
points, evaluation points act independently of the other two 
model points. Nodal points and collocation points are related 
in that the pairing between one nodal point and one collocation 
point determines the coefficient of the basis function at that 
specific nodal point. Evaluation points exist solely to determine 
the error associated with the approximation function. Root 
means squared (RMS) error is used as the evaluation criteria 
for optimum node location, and also maximum absolute error 
(Max error). 

To determine the optimum pairing between a specific node 
and a specific collocation point each node must be tested with 
each collocation point and the RMS error and Max error associ-
ated with that approximation function must be recorded. The 
following algorithm outlines the process by which nodal point 
and collocation point pairs are determined and optimized. 

OPTIMIZATION ALGORITHM
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OPTIMIZATION ALGORITHM
1. Create a pool of node points located exterior of the prob-

lem domain. This set should be in no particular pattern. 
Randomness in coordinates is beneficial. 

2. Create a pool of collocation points located on the problem 
boundary. These are locations where the potential is 
known. 

3. Create a one node approximation function for each com-
bination of node and collocation point. Record the error 
for each.  

4. Select the node and collocation pair that produced the 
least error. 

5. Create a two node model, utilizing the selected pair from 
step 4 as one of the node pairs. 

6. Test all two node approximations for error. The approxi-
mation function that results in the least error becomes 
the best two node model. 

7. Repeat steps 4-6 until the number of nodes desired in the 
model is reached. 

The following test problems are examined to demonstrate 
the validity of the algorithm. 

Example Problem: Pressure Source
To demonstrate the algorithm, a concerning soil-water pres-

sure source, such as a longitudinal crack along the surface 
of a high pressure water pipeline, leads to detailed analysis, 
including forensic as well as remediation examination, involv-
ing complex computational modeling methods. The pipeline 
exerts pressure uniformly and can be modeled by the equation,

where h = the constant pressure source strength defined at 
source location (xj,yj,zj). The approximation function is defined 
by

where αk is a real-valued coefficient, and

where (xk,yk,zk) is the kth node. To solve for the αk’s, pressures must 
be defined on the boundary. These locations Pl =(xl,yl,zl), points on the 
boundary become the collocation points where the pressure is known, 
by measuring the pressure at location Pl. Set k = l so there are an equal 
number of nodes and collocation points. The resulting collocation matrix 
equation results in the coefficients corresponding to each node, and 
produces an approximation function to approximate pressure on and 
within the problem domain. 

The problem domain is located in the first octant. It is positioned 
so that the origin or bottom right corner is located at (1,1,1), and has 
length = 8, depth = 2, and height = 4. The test problem is another source 
function with source point located at the origin (0,0,0) where h = 1. 
Figure 1 depicts the problem domain and the location of the test pressure 
source as a star at (0,0,0).  
The solution to this boundary value problem is,

To create the space of 
candidate node loca-
tions for use in the basis 
function definition, an 
adequate amount of 
nodes must be assessed. 
To minimize the algo-
rithm’s run time, the 
number of node loca-
tions examined is lim-
ited to 512. Figure 2 
depicts the location of 
each of the candidate 
nodes.

Similar to the creation 
of the nodes, candi-
date collocation point 
locations must be posi-
tioned on the problem 
boundary. The number 
of collocation points 
need not be the same 
as the number of candi-
date node locations. For 
this example, there will 
be 1000 candidate collo-
cation points. Figure 3 
depicts the distribution 
of candidate collocation 
point locations.

The accuracy of each one node approximation function must 
be evaluated and compared. Let n = the number of candidate 
nodes and m = the number of candidate collocation points. 
To test accuracy, every combination of candidate nodes and 
candidate collocation points will be paired and used to create 
an approximation function. Thus, there will be n x m approxi-
mation functions to be compared for computational error. The 
ordered pair with the least error is deemed the optimized node 
and collocation point location and combination for use in a one 
node model. Table 1 demonstrates the comparison of errors 
that occurs automatically within the algorithm for the one test 
node model and 5 test collocation locations. 

Because the number of possible combinations of nodes and 
collocation points for the sample size that is used is large 
the first five error assessments are presented to give insight 
into the process that is occurring. Table 1 lists the possible 
ordered pairs for a one node model with five choices for col-

Figure 1 - Problem Domain

Figure 2 - Candidate node  
locations assessed.

Figure 3 - Candidate collocation points 
in the problem domain.
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OPTIMIZATION ALGORITHM
location point locations. If the ordered 
pairs listed in Table 1 were the only pos-
sible combinations that could be used for 
the approximation, then the algorithm 
would choose ordered pair 3 because it 
has the least error.

Utilizing a test pool of 1000 nodes and 
729 collocation points, the best node to 
collocation point pair to approximate this 
pressure source is node (.01,.01,.01) and 
collocation point (3.18,5,1.36). The RMS 
error associated with this pair is .000164 
and the max error was 0.00116. This 
result is expected because the approxi-
mation function picks the node that is 
closest to where the actual source func-
tion is located. Essentially, when using a 
one node model to model a single source 
the approximation function will simply 
attempt to ”copy” the source. 

Following the algorithm, the one node 
ordered pair is now held as the first node 

selected in the next two node model 
and also is removed from the candidate 
ordered pairs for future selections. The 
algorithm now tests for the best two node 
solution keeping the optimum node and 
collocation pair from the one node model 
as one of the two nodes. This process is 
then repeated for each additional node 
until there are n basis functions in the 
approximation function. 

Figures 4 - 9 are visualizations of the 
Approximate Solution using the Complex 
Variable Boundary Element Method 
optimization algorithm developed in this 
paper (left hand graphs), the analytical 
solution (center graphs) and the differ-
ence between them (right hand graphs) 
for representative orthogonal planar 
sections through the problem domain 
shown in Fig.1., using 10 nodes. The 
contours are unitless and display the 

Figure 4: Computational results on the x-z plane where y=5.

Table 1 - Record of Computational Error for the 
Single Node Models

Figure  5:  Computational  results  on  the  x-z  plane  where  y=1.

Figure  6:  Computational  results  on  the  x-y  plane  where  z=3.

Two New 
Student Chapters 

Join AIPG!
Welcome,

University of Minnesota - 
Twin Cities

 and 
University of Alabama!

University of Alabama Student Chapter 
Group Photo: Marcella McIntyre-

Redden, Geological Survey of Alabama 
and Alabama Geological Society; 

Richard Katz, Retired  Mining Engineer/
Geologist (Speakers on Left); Dr. Andrus 

University of Alabama Dept Chair, 
Geological Sciences; Student Officers, 

Caryl Orr AIPG Member Sponsor
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The Courses 
You Should 
Have Taken, 
but Did Not or 
Could Not

Figure 7: Computational results on the x-y plane where z=1.

Figure 8: Computational results on the y-z plane where x=1.

Figure 9: Computational results on the y-z plane where x=9. 

error given the differing numerical solu-
tion methods.The results in Figure 16 
demonstrate the error of 10 different 
approximation functions ranging from 
1-10 nodes. The nodes were picked from 
a test pool of 64 candidate node and 125 

candidate collocation point locations.
Test Problem 2 

A more computationally difficult prob-
lem is examined. The analytic solution to 
this boundary value problem is 

u_2(x,y,z)=x^2+y^2−2z^2.

Figure 10: Computational results on x-z plane where y=5. 

The courses that may or may not 
be offered at your institution of higher 
learning are: conflict resolution and 
speech. Both are generally not within the 
earth sciences departments, but both are 
invaluable in your career. Regardless of 
the discipline you eventually specialize 
in - oil and gas, mineral exploration, 
hydrogeology, or environmental geol-
ogy - all will require the knowledge and 
skills imparted by these two fields of 
study. Whether you are dealing with 
local, state, or federal agencies, con-
flicts are inevitable. Conflict within the 
workplace can also be unavoidable, add 
to that the almost inevitable dealings 
with the NIMBY members of the public, 
as well as with other anti-mineral or 
anti-fossil-energy organizations, and it 
is certain that you will be dealing with 
conflict. It is not practical to pursue the 
many facets of conflict resolution, but 
it is critical to know some of the basics 
that will make your job easier. 

As regards a speech course, if you hope 
to advance in your profession, you will 
often be  required to give presentations 
on the work you have done. This may be 
a presentation to upper management, 
a client, or at a professional meeting. 
Being able to present your work in a 
clear and timely speech will do wonders 
for career advancement. 

The good news is that you may be able 
to obtain this knowledge after graduat-
ing. It is a bit more challenging and will 
require discipline and perseverance, but 
it is doable. Depending upon where you 
end up working, you may find adult edu-
cation courses offered at a community 
college or a university college. Public 
speaking can be learned and practiced 
through a local chapter of Toastmasters. 
Toastmasters clubs are prevalent in 
many locations and can often even be 
found in small rural towns. With today’s 
access to the internet, I suspect you may 
find numerous resources available to get 
proficient in both of these disciplines.  

Give it a go, you will be glad you did!

Lawrence Cerrillo, CPG-02763
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Figure 11: Computational results on x-z plane where y=1. 

Figure 12: Computational results on x-y plane where z=3. 

Figure 13: Computational results on x-y plane where z=1.

Figure 14: Computational results on y-z plane where x=1. 

Students!  
Could you use 
$1,000-$3,000 
to help pay for 
your education?

AIPG offers National 
Undergraduate Scholarships 
and the William J. Siok 
Graduate Scholarship annu-
ally. Up to ten undergradu-
ate scholarship are  awarded 
to declared undergraduate 
geological sciences majors 
who are at least sophomores. 
Scholarship awards in the 
amount of $1,000.00 - $3,000 
each will be made to eligi-
ble students attending a col-
lege or university in the U.S. 
Scholarships are intended to 
be used to support tuition 
and/or room and board. The 
graduate scholarship offered 
is $1,000.
Scholarship 
application deadline 
is February 1, 2019.
Go to www.aipg.org/under-
graduates or www.aipg.org/
graduates for application 
instructions.

The same collocation and node can-
didate locations and problem domain as 
used in Problem 1 will be used to approxi-
mate the solution for this new test case.

Figs. 10 through 15 are visualizations 
of the solutions to Test Problem 2 con-
structed in the same way as were Figs.4 
through 9, for the case of 20 approxima-
tion functions.
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Discussion of  
Computational Results

For Example 1, computational error 
decreases as the number of nodes used to 
approximate the exact solution increas-
es. Remember that the analytic solution 
to this boundary value problem is 

The basis functions used in the approxi-
mation are of the form 

Thus, the one node approximation 
selects the node closest to the origin of 
the source function it attempts to model. 
When additional nodes are added in an 
attempt to better the approximation, 
error decreases, but the change in error 
between each additional error decreases. 
Figure 16 depicts the reduction in error 
that occurs when a higher n approxi-
mation function is used to approximate 
pressure. 

Example problem 2 had similar error 
reduction patterns when more basis 
functions were introduced in the approx-
imation function. Figure 17 depicts the 

RMS error for 20 approximation basis 
functions with models developed for 1 to 
20 basis functions for example problem 2. 

The figure shows the error decreases, 
but takes longer than the first test prob-
lem and has more error than the first test 

problem. Because of the computational 
difficulty of this problem more nodes 
are necessary to gain a better approxi-
mation. 

Conclusions
Although there are some observa-

tions stated in the literature as to 
computational accuracy improvement 
by use of different nodal point location 
strategies, there is not a formalized 
procedure for identifying the optimum 
location of modeling nodes that mini-
mize computational error goals. Such 
a formal procedure is presented in this 
paper in the form a new algorithm that 
enables such optimum node locations to 
be identified. The locations of modeling 
nodes are treated as additional degrees 
of freedom in the computational model-
ing effort to reduce computational error 
in achieving problem boundary condi-
tions. As expected, the use of the present-
ed algorithm improved computational 
modeling accuracy. The over-arching 
conclusion can be made that the asso-
ciated increase in available degrees of 
freedom provides significant additional 
opportunities in reducing computational 
error. Additionally, the ability to opti-
mize node locations enables the reduc-
tion in the number of basis functions 
required to create an approximation 
function with the same amount of com-
putation error as previous approxima-

tion functions that required more basis 
functions. The reduction in the number 
of basis functions required to create an 
approximation function with error below 
tolerance reduces the likelihood of an 
ill-conditioned matrix when solving for 
the coefficients in the approximation 
function. 

Recommendations for 
Future Research 

The algorithm explores a set of pos-
sible node locations, collocation point 
locations, and node, collocation order 
pairs. Because the algorithm is greedy 
the time to run the algorithm is expen-
sive resulting in a restriction to the 
number of nodes and collocation points 
in the set of possible locations. Different 
problems will inherently result in differ-
ent node locations. Future research into 
an algorithm that can reduce the set 
to only the most probable locations to 
offer the best approximation. This type 
of algorithm would use the gradient as 
criteria for deciding where to place more 
or less nodes. 
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Figure 15: Computational results on y-z plane where x=9. 

OPTIMIZATION ALGORITHM

Figure 16: Error reduction depiction with 
increasing node use.

Figure 17: RMS error for twenty  
approximation functions.


